
Distributed and Parallel Databases manuscript No.
(will be inserted by the editor)

Cardinality estimation and dynamic length adaptation for
Bloom filters

Odysseas Papapetrou· Wolf Siberski ·
Wolfgang Nejdl

Abstract Bloom filters are extensively used in distributed applications, especially in dis-
tributed databases and distributed information systems, to reduce network requirements and
to increase performance. In this work, we propose two novel Bloom filter features that are
important for distributed databases and information systems. First, we present a new ap-
proach to encode a Bloom filter such that its length can be adapted to the cardinality of the
set it represents, with negligible overhead with respect tocomputation and false positive
probability. The proposed encoding allows for significant network savings in distributed
databases, as it enables the participating nodes to optimize the length of each Bloom fil-
ter before sending it over the network, for example, when executing Bloom joins. Second,
we show how to estimate the number of distinct elements in a Bloom filter, for situations
where the represented set is not materialized. These situations frequently arise in distributed
databases, where estimating the cardinality of the represented sets is necessary for con-
structing an efficient query plan. The estimation is highly accurate and comes with tight
probabilistic bounds. For both features we provide a thorough probabilistic analysis and
extensive experimental evaluation which confirm the effectiveness of our approaches.

Note: This is a preprint. The final version is available athttp://www.springerlink.
com/

1 Introduction & Motivation

Bloom filters were proposed in [1] as compact approximate setrepresentations. The stan-
dard application of Bloom filters is for representing sets ina format suitable for answering
membership queries, i.e., whether an elementx is member of a setS. Bloom filters enable

Odysseas Papapetrou
L3S Research Center, Leibniz Universität Hannover
E-mail: papapetrou@l3s.de

Wolf Siberski
L3S Research Center, Leibniz Universität Hannover
E-mail: siberski@l3s.de

Wolfgang Nejdl
L3S Research Center, Leibniz Universität Hannover
E-mail: nejdl@l3s.de

2

answering membership queries in constant time, and with a configurable false positive prob-
ability. They improve upon alternative representations with respect to required memory and
construction time. In particular, Bloom filter creation cost and memory requirements are
linear with set size, with a very low constant.

Since their proposal, Bloom filters have found wide use in distributed databases, for
reducing network costs. For instance, the Bloom join algorithm [2–4], and several exten-
sions [5, 6] reduce substantially the network cost of distributed joins, by representing the
join attributes with Bloom filters. KLEE [7, 8] uses Bloom filters to optimize the network
usage in distributed top-k query execution. Peer-to-peer applications use Bloom filters to
represent peer contents, to enable query routing in unstructured P2P networks [9–12], and
for estimating item novelty [13]. In addition, Bloom filtersare used for optimizing collabo-
ration protocols, such as collaborative caching [14] and content reconciliation [15], as well
as for query optimization in databases with confidential data, to enable join execution with-
out revealing information [16]. In general, the compactness of Bloom filter representations
and the constant cost for membership tests is appealing for awide range of data-intensive
distributed systems.

In line with their significance, Bloom filter characteristics have been analyzed in depth,
and several extensions have been proposed, e.g., [17–20]. In the context of our work on dis-
tributed databases and peer-to-peer systems we devised twoadditional features: (a) the abil-
ity to dynamically change the Bloom filter length to make it more appropriate for particular
requirements, e.g., the number of elements it represents, and, (b) the ability to estimate the
number of distinct elements hashed in a Bloom filter. These features are important for many
distributed settings. The first feature, dynamically adapting the Bloom filter length, is im-
portant for optimizing network usage in distributed databases, e.g., in Bloom joins. We im-
plement this feature with an extension on the Bloom filter structure, calledBlock-partitioned
Bloom filters. The second feature, deriving a cardinality estimation of aset from its Bloom
filter representation, is required for counting the distinct elements in non-materialized sets,
e.g., streams, or partial joins with the Bloom join algorithm. We propose a probabilistic
Cardinality Estimationapproach, which estimates the number of elements in a Bloom filter
based on its density, efficiently and with high accuracy. A preliminary, limited version of
this work was presented in [5]. Source code for both featuresis available online1.

Block-partitioned Bloom filters.We first examine how to dynamically reduce the length
of a Bloom filter. Standard Bloom filters are bound to the length decided during their ini-
tialization. However, in many cases, it is desirable to reduce the Bloom filter length dynam-
ically, that is, after all elements have been inserted. For example, when executing a chain
of Bloom joins in distributed databases [5], the intermediary Bloom filters may become too
sparse, wasting network resources. In addition, for some applications, the optimal Bloom
filter length cannot be computed a priori. For instance, for the case of Bloom joins, the opti-
mal Bloom filter length depends on parameters determined foreach particular Bloom join at
runtime [6]. Similarly, when Bloom filters are used for summarizing large sets in distributed
systems, e.g., [14, 21], the optimal Bloom filter length for each communication is deter-
mined from properties of each particular communication, such as the network connectivity
between the two endpoints.

Currently, the only way to reduce the Bloom filter length is byrebuilding it from scratch,
which is computationally very expensive. When non-materialized sets are involved, e.g., el-
ements of a stream that are not saved locally, rebuilding thefilter from scratch is even infea-
sible. To address this problem, we propose a novel encoding scheme for Bloom filters. We

1 http://www.l3s.de/˜papapetrou/ebf/ebf.jar

3

call it Block-partitioned Bloom filterbecause it partitions the Bloom filters in smaller blocks,
where each subset of blocks can act as an independent Bloom filter. Reducing the length of
a Block-partitioned Bloom filter incurs practically no cost, and causes only a negligible loss
of accuracy compared to the optimal Bloom filter of the same length.

An established extension of Bloom filters is Dynamic Bloom filters [17, 22], which en-
ables the filter to increase its length for accomodating moreelements. We combine Block-
partitioned Bloom filters with Dynamic Bloom filters, to enable both increasing and reduc-
ing the length, allowing for a flexible adaptation to the contents with a near-optimal false
positive probability. The combination is calledDynamic Block-partitioned Bloom filters,
and it is useful for summarizing sets that increase progressively, e.g., [15, 23]. Standard
Bloom filters are inefficient for these contexts, as they need to be initialized for the worst-
case scenario, i.e., for a very large cardinality. Dynamic Block-partitioned Bloom filters en-
able a pay-as-you-go approach, starting from a generic Bloom filter length, and increasing
or reducing it progressively.

Cardinality Estimation for Bloom filters.The second contribution allows estimating
the Bloom filter cardinality in the absence of the represented set2. At first glance, it looks
as if this problem could be easily solved by attaching the setcardinality to the Bloom filter.
However, this is not always possible, because Bloom filters are often used to represent non-
materialized sets. For example, the Bloom filter of the union(intersection) of two sets can be
computed efficiently by performing a bitwise disjunction (conjunction)of their respective
Bloom filters, without actually requiring the materialization of the resulting set or any of
the two sets. This case frequently occurs in distributed databases, e.g., Bloom joins [2–4],
where estimating the cardinalities is used to create an optimal query plan [6]. Furthermore,
in P2P networks, estimating the Bloom filter cardinality is required for devising query plans
that increase the information retrieval quality, e.g., [13], as well as for organizing the over-
lay network such that peers with similar contents become neighbors [24]. We present an
in-depth analysis of probabilistic cardinality estimation, and derive tight probabilistic error
bounds. Our analysis also covers Block-partitioned Bloom filters, and Bloom filters gener-
ated by bitwise conjunction or disjunction of standard Bloom filters. Extensive experimental
evaluation shows that the estimations are highly accurate,even for extremely dense Bloom
filters.

In the rest of the paper, we describe, discuss, and evaluate each contribution in depth
independently, and also show how they are combined. Since the proposed contributions are
applicable to a variety of contexts, we deliberately do not constrain the experimental evalua-
tions to a particular application scenario. Instead, we cover a broad range of applications and
contexts through extensive experimentation. The paper is structured as follows. In the next
section we present the basics for Bloom filters, and introduce notations. In Section 3 we de-
scribe Block-partitioned Bloom filters, and in Section 4 we extend them to Dynamic Block-
partitioned Bloom filters. The probabilistic cardinality estimation approach is presented in
Section 5, for both standard and Block-partitioned Bloom filters. Section 6 presents further
usage scenarios and applications for the three proposed extensions, mostly from the area of
distributed databases and information systems. We close with related work and conclusions.

2 We use the expression ’Bloom filter cardinality’ to denote the cardinality of the set represented by this
Bloom filter

4

2 Bloom filter basics

A Bloom filter is a space-efficient representation of a setS = {x1, x2, x3, . . . , xn} of n ele-
ments from a universeU. It consists of an array ofmbits and a family ofk independent hash
functionsF = { f1, f2, . . . , fk}, which hash elements ofU to integers in the range of [1,m].
All m bits are set to 0 initially3. An elementx is inserted into the Bloom filter by setting all
positions fi(x) of the bit array to 1.

We assume that an elementx is contained in the original set if all positionsfi(x) of the
Bloom filter are equal to 1. If at least one of these positions is set to 0, then we conclude
that x is not present in the original set. However, Bloom filters exhibit a small probability
of false positives; due to hash collisions, it is possible that all bits representing a certain
element have been set to 1 by the insertion of other elements.The probability for a false
positive isPrfp ≈ (1− e−kn/m)k.

In some scenarios, the number of elements hashed in a Bloom filter is unknown. For
these cases, we can compute the false positive probability based on the number of true bits
in the filter. A false positive occurs when allk hash values point to true bits. For a Bloom
filter with t bits set to true, the probability that one hash function points to a true bit equals
to t/m. The probability that allk hash functions point to true bits, which leads to a false
positive, is (t/m)k.

For given set cardinality and Bloom filter length, the false positive probability can be
minimized by optimizing the ratio between true bits and Bloom filter length. We denote this
ratio asBloom filter density. The false positive probability is minimized when this density
is 0.5. This is the case when the number of hash functions is set tok ≈ m

n ln(2).
Bloom Filter resolution. Clearly, the false positive probability is influenced by the

length of the Bloom filterm and the number of hash functionsk. We refer to a Bloom
filter configuration consisting of these two parameters as its resolution, because it conveys
the ability of the filter to represent a set.

2.1 Set Union and Intersection with Bloom Filters

It is often convenient to perform approximate set union and intersection directly on the
Bloom filters of the sets. For example, in distributed settings nodes can perform intersection
of their respective Bloom filter representations to identify overlapping content. We now
present these operations and the accompanied false positive probabilities for each operation.

Set union with Bloom filters.We can construct the Bloom filter corresponding to the
union of two setsS1 andS2 by merging bitwise their Bloom filtersBF1 andBF2. In particu-
lar, the merged Bloom filterBF∪ of setS∪ = S1∪S2 equals toBF1∨ BF2, with ∨ denoting
a bitwise OR merging.

Since the Bloom filterBF∪ constructed with OR-merging is identical to the traditional
Bloom filter of S∪, its false positive probability can be found as explained previously for
standard Bloom filters; if the number of elementsn∪ in the union is known, the false positive
probability in BF∪ is Prfp[BF∪] ≈ (1 − e−kn∪/m)k, wherem andk denote the length of the
filter and the number of hash functions respectively. Ifn∪ is unknown, for instance, when
the intersection is not materialized, the probability for afalse positive can be inferred from
the number of true bitst in the Bloom filter:Prfp[BF∪] = (t/m)k.

3 We use the expressions ‘A bit is set to true/false’ and ‘A bit is set to 1/0’ interchangeable.

5

m Length of Bloom filter
k Number of hash functions
n Number of elements in the Bloom filter
Prfp False positive probability
c Expected set cardinality
t Number of true bits in the Bloom filter
Ŝ(·) Maximum likelihood value of the num-

ber of true bits

Ŝ−1(·) Maximum likelihood value of the
number of elements

µ Number of blocks for BBFs and
D-BBFs

λ Number of batches for D-BBFs
nthres Max. number of elements per batch

in D-BBFs

Table 1 Notations used throughout Sections 3 to 5

Set intersection with Bloom filters.Let BF∩ denote the Bloom filter ofS1 ∩ S2. The
Bloom filter representations ofS1 andS2 are not sufficient for accurately computingBF∩.
We can however get an approximation by joiningBF1 andBF2 with a bitwise-AND.

Let BF∧ := BF1∧BF2, with∧ denoting bitwise AND. ThenBF∩ ≈ BF∧. AlthoughBF∧
is an approximation, it can still be used for membership tests in the same way as standard
Bloom filters: we conclude that an elementx is not contained inS1 ∩ S2 if at least one of
the hash values ofx points to a false bit inBF∧. If all the functions forx map to true bits in
BF∧, with high probabilityx belongs toS1 ∩ S2.

Similar to the case of standard Bloom filters, a false positive occurs when allk hash
values of an element point to true bits inBF∧. Each hash value points to a true bit with
probability t/m, where t denotes the number of true bits inBF∧, and m its length. The
probability that all hash values point to true bits isPrfp[BF∧] = (t/m)k, wherek denotes
the number of hash functions. Sincet is less than or equal to the true bits in any of the
Bloom filters BF1 andBF2, the following inequalities also hold:Prfp[BF∧] ≤ Prfp[BF1],
andPrfp[BF∧] ≤ Prfp[BF2]).

An interesting observation is that the cardinality of the intersection is not easily com-
putable since the actual set intersection is not materialized. The same applies to set union.
In Section 5.2 we show how to estimate this cardinality with high precision, using only the
Bloom filters.

3 Block-Partitioned Bloom Filters for Resolution Reduction

We now consider the problem of adapting the Bloom filter resolution dynamically. In par-
ticular, we want to reduce the Bloom filter resolution according to application requirements,
after the Bloom filter has been constructed. This is requiredfor optimizing Bloom filters
when they cannot be recreated from scratch, e.g., for streaming data. But even in cases
where recreating a Bloom filter of optimal length would be possible, we would like to avoid
the computationally expensive rehashing of all elements. Therefore, we require a technique
which enables us to reduce the resolution of a Bloom filter without rehashing the elements,
and even in the absence of the set that the Bloom filter represents.

In the next section we point out why standard Bloom filters areinapt for this purpose.
In Section 3.2 we describe and analyze Block-partitioned Bloom filters, which efficiently
address the problem of resolution reduction. We validate their efficiency and effectiveness,
both theoretically, and experimentally in Section 3.3. Table 1 summarizes the definitions
used throughout the rest of this paper.

6

 0

 0.2

 0.4

 0.6

 0.8

 1

128 256 512 1024 2048 4096 8192
F

al
se

 P
os

iti
ve

 P
ro

ba
bi

lit
y

Reduced Length (Kbits) - Log scale

Optimal
BF

BBF

Fig. 1 False positive probabilities with different Bloom filter reduction techniques.

3.1 Resolution Reduction for Standard Bloom Filters

Assume that we want to reduce a large sparse Bloom filterBF of lengthm to a smaller one
of lengthm′, denoted withBF′. For this, we need a transformation functionmap(·) which
maps the bits from the original filter to the target Bloom filter, e.g.,map(x) = (x modm′).
For testing whether an element belongs to the reduced Bloom filter BF′, we need to use
the original hash functions, then applymap, and finally check if the respective bits are set
in BF′. The crucial issue here is that, regardless of the choice of the mapping function, we
cannot reduce the number of hash functions in this process, because for any given bit inBF,
it is impossible to find out which hash function(s) set it to true.

Given the length ratior = m′/m, the false positive probability forBF′ is Pr′fp ≈ (1 −

e−kn/(mr))k. The false positive probability before reduction isPrfp ≈ (1 − e−kn/m)k, while
the optimal false positive probability for a Bloom filter of lengthm′ which represents the
same set is onlyPrreduced-opt≈ (1− e−koptn/(mr))kopt = (1 − e−knr/(mr))kr = Prr

fp. It follows that
Prfp < Prreduced-opt< Pr′fp for any length ratio 0< r < 1. This result is independent of the
chosen transformation function.

Figure 1 shows how the Bloom filter false positive probability increases when a standard
Bloom filter is reduced using mapping, compared to the optimal reduction. The probability
for the optimal reduction is computed by rebuilding the Bloom filter from scratch, using
the optimal number of hash functions for the given number of elements and Bloom filter
length. The results are for an initial Bloom filter of length 8192 Kbits, representing 100000
elements. The initial Bloom filter uses 60 hash functions, which is the optimal number for
this configuration. For the standard Bloom filter, false positive probability already exceeds
0.75 when the Bloom filter length is reduced to 1/8 of the original length using mapping.
Note that the optimal false positive probability for a Bloomfilter of the same length is less
than 0.01.

The reason for the large increase in the false positive probability is the inability to reduce
the number of hash functions in proportion to the length of the Bloom filter. Therefore,
the density of the reduced Bloom filter increases to values higher than the optimal density,
which is 0.5 [25]. The false positive probability increasespolynomially with the density.
Consequently, the Bloom filter soon becomes unusable for membership tests.

7

3.2 Block-partitioned Bloom Filters

The key for maintaining a near-optimal false positive probability while reducing the Bloom
filter length is to ensure that its density remains around 0.5. To achieve this, we need to adapt
the number of hash functions to the reduced length.

hf
1 (e

1)

h
f

2 (e
1) hf 3

(e 1
)

1 1 0 0 ... 1 0 1 1 0 ... 0 1 0 1 1 ... 1

Block 1 Block 2 Block 3

add(e1)

Range of hf1 Range of hf2 Range of hf3

Fig. 2 Adding an element to a Block-partitioned Bloom filter of 3 blocks and 1 hash function per block.

To address this requirement, we propose Block-partitionedBloom filters (BBFs). BBFs
are composed of many small, independent Bloom filters, each with its own bit array and
hash functions. We refer to these smaller Bloom filters as blocks. In particular, letm be
the desired length of the BBF. We compose the BBF by concatenating µ blocks, each of
length mb = m/µ and with its ownkb hash functions. Similar to standard Bloom filters,
all hash functions in a BBF are pairwise independent. For thepurpose of adding elements
and checking for elements, each block is treated as a stand-alone Bloom filter. An element
is added to the BBF by adding it to all blocks (cf. Figure 2). Membership tests are also
performed against all blocks. If the membership test fails for any block, then the element
is not contained in the BBF. A false positive occurs when all blocks answer positively for
an element because of hash collisions, even though the element had not been hashed in the
BBF.

Assuming pairwise independent hash functions in all blocks, we find the false positive
probability of the BBF by multiplying the corresponding probabilities for each block. If
n elements are already hashed in the BBF, the false positive probability in each block is
Prfp-block = (1 − (1 − 1

mb
)kbn)kb ≈ (1 − e−kbn/mb)kb, wherekb denotes the number of hash

functions per block andmb the length of each block. This gives us a total false positive

probabilityPrfp =

(

1−
(

1− 1
mb

)kbn
)kbm/mb

≈ (1− e−kbn/mb)kbm/mb.

Reducing the length of a BBF is straightforward and incurs practically no cost. Consider
a BBF withµ blocks, each of lengthmb. We reduce it to a lengthm′ ≤ µ × mb by taking
only the firstm′/mb blocks (rounded to the nearest integer) with their accompanying hash
functions. The resulting Bloom filter can also undergo the same process again, if further
resolution reduction is required. This reduction step is inexpensive regarding memory and
computation, since it does not require rehashing of the elements. Therefore BBFs are also
suitable for use in applications with real-time constraints, such as stream summarization.

It is important to note that BBFs can still be combined with bitwise AND, or bitwise OR,
similar to normal Bloom filters. Even more important for networking applications, we can
also combine BBFs of different resolutions as long as these share the same hash functions
and block length; in this case, we produce a combined BBF of the lowest of the two resolu-
tions. Particularly concerning the bitwise OR case, more advanced merging techniques are

8

also possible, such as keeping the additional information from the largest BBF separately,
and adapting the membership tests accordingly. However, such merging techniques have the
disadvantages that they do not yield standard BBFs, they require keeping track of all the
merging actions, and inevitably add complexity at the membership test algorithm.

Configuration of Block-partitioned Bloom Filters.We now show how a BBF is ini-
tialized to minimize the false positive probability. Letm denote the maximum length that
the BBF can occupy. The expected number of elements to be hashed in the BBF is denoted
with n. For configuring the BBF, the optimal length per blockmb, number of hash func-
tions per blockkb, and number of blocksµ need to be chosen. We achieve maximum length
flexibility by settingkb to 1. With respect toµ andmb, we want the configuration that min-
imizes the false positive probability for the BBF, subject to mb × µ = m. The configuration
mb = dn/ ln(2)e andµ = m/mb is the one that results to an expected density of 50% in
each block (the optimal information theoretic density), and thus minimizes the false positive
probability. The resulting false positive probability forthe BBF then becomes:

Prfp =

(

1−

(

1−
1

mb

)n)m/mb

≈
(

1− e−n/mb
)m/mb

(1)

In some scenarios,mb is preselected from the application requirements, e.g., sothat each
block can nicely fit to the processor’s L1/L2 cache or for enabling the BBF to be reduced to
specific lengths. Then, we find the optimal value forkb as follows. False positive probability
of the BBF is minimized when the false positive probability for each block is minimized.
Given the expected number of hashed elementsn, the number of hash functions per block
kb that minimize this probability iskb = max(1, b(mb/n) ln(2)c).

3.3 Evaluation

We evaluated the false positive probability of BBFs experimentally. In particular, we
compared the false positive probability achieved by BBFs with the respective probability
achieved when reducing a standard Bloom filter, using mod as amapping function, as ex-
plained in Section 3.1. As an additional baseline, we have used the false positive probability
exhibited by the optimal Bloom filter of the same length, i.e., there exists no other Bloom
filter configuration which achieves a lower false positive probability for this length. To com-
pute this baseline, we determined the optimal number of hashfunctions for the given length
and set cardinality, and rebuilt the standard Bloom filter from scratch.

Our evaluation setup simulates the scenario of reducing thelength of a Bloom filter
before sending it over the network, as is frequently required in distributed applications (see
Section 6). We ran the same set of experiments for sets with cardinalities between 50000
and 1 million. We now present the results for a set size of 100000. The outcomes for the
other cardinalities were similar. We generated the set by selecting 100000 distinct elements
randomly. Due to hashing, the presented evaluation resultsare independent of the type of
elements contained in the set, which in our case were randomly selected integers. After
constructing the set, we hashed all its elements in a standard Bloom filter of 8192 Kbits with
60 hash functions, which minimized the false positive probability. For the BBF, we used 64
blocks of 128 Kbits, each with 1 hash function.

Figure 1 shows the effect of length reduction on the false positive probability (X-axis is
log scale). We see that BBFs exhibit near-optimal false positive probability for all reduction
lengths. On the contrary, the standard Bloom filter suffers from high false positive proba-
bilities even for relatively small reductions. For instance, when the standard Bloom filter is

9

reduced to 1024 Kbits, the false positive probability exceeds 0.75, while the false positive
probability given by the BBF for the same length is less than 0.01. Reducing the length fur-
ther to 512 Kbits renders the standard Bloom filter useless for all practical concerns, while
the corresponding optimal and Block-partitioned Bloom filter still maintain false positive
probabilities less than 0.1, which are still acceptable fora wide range of network appli-
cations, e.g., [6, 11, 21, 26]. We also note that, for all reduction lengths, the false positive
probability offered by the BBF is nearly equal to the optimal false positive probability: the
difference between the corresponding false positive probabilities in the above example is
always less than 0.0001.

False positive probability of standard Bloom filters increases drastically with resolution
reduction because their density becomes too high, as a result of the fixed number of hash
functions. For example, when the standard Bloom filter is reduced to 1024 Kbits, its density
exceeds 0.99, and its false positive probability is 0.76. The optimal false positive probability
for a standard Bloom filter of this length is obtained with 7 hash functions and it is only
0.007. Approximately the same false positive probability is obtained by the BBF which uses
8 blocks, each with one hash function. The density of each block in the BBF is indepen-
dent of the total number of hash functions, therefore the false positive probability increases
slowly compared to standard Bloom filter resolution reduction.

In summary, Block-partitioned Bloom filters enable efficient and effective resolution
reduction, and can be applied even in applications with real-time requirements. They exhibit
near-optimal false positive probability for all reductionrates, without requiring rehashing of
elements. Moreover, they enable all basic Bloom filter operations, like membership queries,
and Bloom filter unions and intersections.

4 Dynamic Block-partitioned Bloom Filters

Applications frequently require Bloom filters that can be both reduced and increased in
length. Consider for instance applications which construct Bloom filters of sets of unknown
cardinalities, e.g., non-materialized sets, or streams. These applications cannot optimize a
priori the Bloom filter configuration for the cardinality of the set. If they underestimate the
set cardinality, the false positive probability of the Bloom filter will be too high and will ren-
der the Bloom filter useless. If they overestimate the set cardinality, they will generate a very
large Bloom filter which cannot be easily sent over the network or stored. These scenarios
require a pay-as-you-go solution, a data structure that inherits the Bloom filter characteris-
tics and that can be increased and/or reduced in length to adjust to the set cardinality, or to
the requirements of the application.

Block-partitioned Bloom filters go a step towards the right direction; they allow reducing
the Bloom filter length and number of hash functions at will, so that the application-specific
cost function is optimized. However, the structure itself does not allow increasing the Bloom
filter length, to compensate for a higher number of elements than the expected one. We ad-
dress this limitation by combining BBFs with an orthogonal approach, the Dynamic Bloom
filters proposed by Guo et al. in [17,22].

The Dynamic Bloom filters approach proposes starting with a single small Bloom filter,
and continuing to add elements in it until the number of hashed elements reaches a prede-
fined thresholdnthres. Then, a new empty Bloom filter is constructed, with the same hash
functions and the same length, and is attached to the data structure. The nextnthres elements
are then added to the new Bloom filter. This process is repeated until all set elements are
hashed. Query processing for the Dynamic Bloom filter is analogous; for finding whether an

10

Batches

Batch 1 1 1 1 0 ... 0 1 1 1 0 ... 0 0 1 0 1 ... 1

Batch 2 0 1 0 1 ... 1 0 1 1 0 ... 0 0 1 1 0 ... 0

Batch 3 0 1 1 0 ... 0 1 0 1 0 ... 1 0 1 0 0 ... 1

Batch 4 0 0 0 0 ... 0 0 0 0 0 ... 0 0 0 0 0 ... 0

Block 1 Block 2 Block 3

Range of hf1 Range of hf2 Range of hf3

Fig. 3 A Dynamic Block-partitioned Bloom filter with 4 batches and 3blocks per batch. The first three
batches are frozen – no additions are allowed. New elements are added to the last batch.

element exists in a Dynamic Bloom filter, the element is hashed once, and checked against
all Bloom filters of the data structure. If the element does not exist in any of them, we can
safely conclude that the element is not in the set. If on the other hand one of the filters returns
a positive answer for an element, the element exists in the original set with a computable
probability. For a Dynamic Bloom Filter withn elements, the false positive probability is at

most equal to 1−
(

1−
(

1− e−knthres/m
)k
)dn/nthrese

, wheremandk denote the length and number

of hash functions in each Bloom filter respectively.

The false positive probability of Dynamic Bloom Filters grows almost linearly with the
number of elements. Therefore, when the number of elements can be approximated, normal
Bloom filters are better suited for representing the set. Similarly, when the set cardinality
can be upper bounded, a BBF can be used, which can be reduced after the whole set has
been hashed, to achieve the required trade-off between length and false positive probability.
However, when the set cardinality cannot be approximated atall, Dynamic Bloom Filters
are the only viable option.

We combine BBFs with Dynamic Bloom Filters to get Bloom filters of a fully adjustable
length. We refer to the new structure as Dynamic Block-partitioned Bloom filters (D-BBF
for short). D-BBFs offer the necessary functionalities for reducing and increasing the Bloom
filter length, to dynamically adapt to the cardinality of theset. The structure works as follows
(for now, assume that the optimal configuration parameters for the D-BBF are given). Blocks
are considered in batches, as depicted in Figure 3. For blocks of lengthmb and withkb hash
functions, we set the threshold of maximum elements per batch nthres. We then initialize
the first batch of blocks, which is essentially a Block-partitioned Bloom Filter, and we start
hashing the elements. When a batch reaches its maximum elements threshold, we freeze
all blocks in the current batch, and create a new batch of blocks for hashing the rest of the
elements. The process is repeated until all elements are hashed. Querying for an element
follows the same logic: all Bloom filter blocks on all batchesare independently queried. If
a batch of blocks is found which appears to contain the query,then the element belongs at
the original set with high probability. If no batch of blocksfully satisfies the query, then the
element does not belong in the set represented by the D-BBF. To reduce a D-BBF, each of
the contained BBFs is reduced to the new length, as explainedin Section 3. Optimally, the
reduction process occurs after all elements are hashed in the D-BBF, such that the precise
false positive probability, can be determined or upper-bounded. The reduced D-BBF remains
completely functional, i.e., it can accept more elements, answer membership queries, and
undergo further reduction.

We now compute the false positive probability for the D-BBF.Let n denote the total
number of elements hashed in the D-BBF. Withnthres we represent the threshold of maxi-
mum elements per batch. We useλ to denote the total number of batches, i.e.,λ = dn/nthrese.

11

Each batch is essentially a BBF, therefore the false positive probability for a batch can be
found using Eqn. 1:Prfp-batch = (1 − (1 − 1/mb)kbx)mkb/mb, wherex denotes the number of
elements in the batch. For full batches,x equals tonthres by construction, and for the last
batch,x equals ton− (λ−1)×nthres. The cumulative false positive probability for the D-BBF
structure is

Prfp =1−
λ

∏

i=1

(

1− Prfp-batch[batch i]
)

=1−
(

1− (1− (1− 1/mb)kb(n−(λ−1)nthres))mkb/mb
)

×

λ−1
∏

i=1

(

1− (1− (1− 1/mb)kbnthres)mkb/mb
)

≤1−
(

1− (1− (1− 1/mb)kbnthres)mkb/mb
)λ
≈ 1−

(

1−
(

1− e−kbnthres/mb
)mkb/mb

)λ

(2)

Although Eqn. 2 is accurate, it is difficult to interpret. For a better insight on how the
false positive probability grows with the number of blocks,we derive an upper bound as
follows. A false positive event occurs when at least one of the batches in the D-BBF returns
a false positive. Thus, the probability of a false positive is the probability of at least one
batch to return a false positive, minus the probability of atleast two batches to return a false
positive, plus the probability of at least three batches to return a false positive, and so forth.
The dominant term in this equation is the first term (the probability of at least one batch to
return a false positive), and the true value of the equation is always less than the value of
the first term. Therefore, the following inequality is valid: Prfp ≤

∑λ
i=1 Prfp-batch[batch i] =

λ ×
(

1− e−kbnthres/mb
)mkb/mb

. In the simplified inequality we clearly see that the false positive
probability of the D-BBF structure grows at most linearly with λ.

Configuration of Dynamic Block-partitioned Bloom filters.The configuration has two
objectives. First, it must yield a flexible D-BBF, which can be reduced effectively to address
the particular requirements of the application, decided atruntime. Second, it must optimize
the D-BBF structure so that it maintains a low false positiveprobability, even after the reso-
lution reduction step.

The configuration step allows the application to impose the following constraints:

– The length of each batch of blocksm: This value will be chosen such that block process-
ing and transmission can be performed efficiently. For example, each single batch can
be set to 8 Kbytes, so that it can be always cached to the very fast L1 or L2 processor’s
cache (modern off-the-shelf PC’s have at least 32 Kbytes L1 cache and around 1 Mbyte
of L2 cache). Another option is to set it to the Maximum Transmission Unit (MTU)
value, so that each batch of blocks can be packed to a single TCP/IP network message.

– The false positive probability per batchPrfp-batch: When the communication cost can be
formalized as a trade-off between the false positive probability and the length of each
batch,Prfp-batch is set to the value that optimizes the trade-off. Otherwise, it can be the
maximum false positive probability accepted by the user.

We now need to decide on the values ofmb, kb, and nthres. Similarly to the case of
BBFs, we setkb to 1 by default, because this value gives the maximum flexibility for the
length reduction step without causing noticeable increasein the false positive probability.
We then need to choose the values ofmb andnthres that will minimize the overall false posi-
tive probability in the D-BBF. This probability can be minimized by maximizing the number
of elements per batchnthres, thereby reducing the number of batches required to represent
the set. To find the value ofmb that maximizesnthres we use local search. We first start with

12

a single block per batch of lengthmb = m, and compute the maximum number of elements
per batchnthres, such that the false positive probability per batch is at most Prfp-batch. Recall
that each batch is a standalone BBF, hence the maximum numberof elements per batch can
be computed efficiently using Eqn. 1. We then gradually increase the number of blocks per
batchµ, adjusting the length per block tom/µ. For eachµ, we compute the corresponding
value ofnthres, keeping track of theµ which leads to the maximumnthres. Note that we are
only interested in the values ofµ which satisfy the constraintm/µ ∈ N1, thereby reducing
the solution space toO(log(m)) possible values. The cost of this computation is negligible,
and it happens only during initialization. An additional optimization is possible by consid-
ering that the function that describes the relation ofnthres andµ is concave. Therefore, hill
climbing optimization is guaranteed to derive the value ofmb that maximizesnthres. An al-
ternative method for deriving the optimalmb is by assuming real values fornthres andmb,
and using derivation to optimize the equation.

4.1 Evaluation

The purpose of the experiments was to examine the suitability of D-BBFs for representing
sets of unknown cardinalities, such as streams and non-materialized sets. To systematically
evaluate the structure, we initialized D-BBFs for an expected set cardinality, and used them
to represent sets that were either larger or smaller than theexpected set cardinality. We
compared D-BBFs with standard Bloom filters, with respect tolength and false positive
probability.

We first chose the expected set cardinalityc ∈ {50000, 100000, 200000}, and the target
false positive probabilityPrfp ∈ {0.1, 0.05, 0.01, 0.005}. For each combination ofc andPrfp,
we initialized a standard Bloom filter, denoted as BF, and a Dynamic Block-partitioned
Bloom filter, denoted as D-BBF. Following, we created a setS with cardinality |S| in the
range of [c/5 . . . 5c]. Because the process of inserting elements in Bloom filtersis based
on hashing, the experimental results are orthogonal to the type of elements inS, which in
our case was random integers. For example, the results also apply to stream summarization,
where these sets would contain the elements of the stream, which could be of any type.

After initializing S, we added all elements ofS to both BF and D-BBF. For the D-BBF
structure, after adding all elements, we also reduced its resolution so that it offered a false
positive probability closer to the chosen probabilityPrfp. The standard Bloom filter did not
allow this resolution reduction since it lacks length flexibility. Finally, we measured the
resulting false positive probability and the length of the two structures.

Figures 4 a.-d. plot the false positive probabilities in relation to the cardinality of
the set, when the two structures are configured forPrfp = 0.1, 0.05, 0.01, 0.005 respec-
tively, assuming an expected set cardinality of 100000. Table 2 provides further details
for selected experimental configurations. The results for different expected set cardinalities
(c ∈ {50000, 200000}) were analogous. The limitation of standard Bloom filters isclearly
visible in these results: they are rendered useless when theactual cardinality of the set is
notably higher than the expected set cardinality, e.g., three times as much. Interestingly,
selecting a lower target false positive probabilityPrfp does not alleviate the problem of stan-
dard Bloom filters. For example, for 500000 elements, the false positive probability of the
standard Bloom filter withPrfp = 0.1 is nearly equal to the corresponding false positive
probability of the standard filter initialized forPrfp = 0.005 (approximately 0.8). An expla-
nation for this behavior can be derived from the fact that foroptimizing the false positive
probability for an expected set cardinality, the number of hash functions is chosen such that

13

Optimized forPrfp =0.05 Optimized forPrfp =0.005
Set D-BBF BF, 610Kbits D-BBF BF, 1078Kbits

cardinality Length (Kbits) Prob Prob Length (Kbits) Prob Prob
25000 305 0.022 ≈0 404 0.005 ≈0
50000 458 0.021 0.006 674 0.003 ≈0
100000 1220 0.050 0.050 2155 0.005 0.005
150000 1220 0.055 0.145 2155 0.005 0.037
200000 1830 0.097 0.272 3232 0.010 0.117
300000 2440 0.142 0.531 4310 0.015 0.380
400000 3050 0.185 0.726 5388 0.020 0.635
500000 3660 0.226 0.847 6466 0.025 0.805

Table 2 False positive probabilities and length for Dynamic Block-partitioned Bloom filter and standard
Bloom filters. The lowest false positive probability for each experiment is printed in bold.

 0

 0.2

 0.4

 0.6

 0.8

 1

100000 300000 500000F
al

se
 P

os
iti

ve
 P

ro
ba

bi
lit

y

Set size

a.

 BF
 D-BBF

 0

 0.2

 0.4

 0.6

 0.8

 1

100000 300000 500000F
al

se
 P

os
iti

ve
 P

ro
ba

bi
lit

y

Set size

b.

 BF
 D-BBF

 0

 0.2

 0.4

 0.6

 0.8

 1

100000 300000 500000F
al

se
 P

os
iti

ve
 P

ro
ba

bi
lit

y

Set size

c.

 BF
 D-BBF

 0

 0.2

 0.4

 0.6

 0.8

 1

100000 300000 500000F
al

se
 P

os
iti

ve
 P

ro
ba

bi
lit

y

Set size

d.

 BF
 D-BBF

Fig. 4 False positive probabilities of D-BBF and standard Bloom filters. All structures are configured for
100000 elements and for initial false positive probability: a. 0.1, b. 0.05, c.0.01, d. 0.005.

the resulting filter has a density of 0.5. This is independentof the chosen false positive prob-
ability. Adding more than the anticipated elements in an optimized Bloom filter leads to a
rapid increase of the density, causing more hash collisionsand high false positive probabili-
ties.

Regarding D-BBF, we first note that its false positive probability scales favorably with
the cardinality of the set. Even the D-BBF configured for a relatively high initial false pos-
itive probability of 0.1 gives a maximum false positive probability of 0.4 for 500000 ele-
ments, whereas the corresponding false positive probability for the standard Bloom filter is
over 0.8. The small fluctuation observed in the false positive probability of D-BBF (particu-
larly visible in Figure 4 a.) indicates the addition of a new block in D-BBF. We also note that
for large sets, false positive probability grows approximately linearly with the number of el-

14

ements, but with a very small coefficient, which is controlled from the initial false positive
probability per batch. This property of D-BBF makes the structure suitable for representing
sets of unknown cardinality.

As expected, D-BBFs are more accurate when they are initialized for a small false posi-
tive probability (compare for instance Figure 4 d. with Figure 4 a.). It is therefore beneficial
to configure the D-BBF for a very low target false positive probability, and after all elements
are added, to reduce its resolution to the minimum resolution that satisfies the required false
positive probability.

It is also interesting to see how the length of D-BBFs compares with the length of stan-
dard Bloom filters (Table 2). Standard Bloom filters are configured for a fixed set cardinal-
ity, therefore their length remains constant throughout the experiment. We see that for small
sets, large standard Bloom filters are inefficient; even though they reduce the false positive
probability well below the targeted one, they require too much space, as they do not allow
resolution reduction. For sets larger than the expected cardinality, standard Bloom filters re-
quire less space than D-BBFs, but they also have very high false positive probability. Instead,
D-BBF structure works in a pay-as-you-go approach. It adds/removes batches and blocks,
so that the false positive probability approximates the targeted false positive probability as
much as possible.

Summarizing, D-BBFs have better scalability characteristics than standard Bloom fil-
ters, and they maintain an acceptable false positive probability even for sets significantly
larger than the predicted ones. They also enable resolutionreduction, which is important
for distributed applications. These properties make the D-BBF structure a good choice for
summarizing sets of unknown cardinalities for membership tests.

5 Cardinality Estimation for Bloom Filters

We now show how to estimate the cardinality of a set – the number of distinct elements
it contains – based solely on its Bloom filter. This functionality is useful when it is too
expensive to maintain or retrieve the full set, and only a Bloom filter representation of the
set is available. This frequently occurs in stream processing [27], in Bloom joins [2, 3], and
in other distributed systems. We describe several such applications and show how they can
directly benefit from Bloom filter cardinality estimation inSection 6.

In Section 5.1 we describe cardinality estimation for standard Bloom filters. In Sec-
tion 5.2 we show how the same principles are used to estimate the cardinality of set unions
and intersections by using only the corresponding Bloom filters of the sets. We provide the
corresponding analysis for Block-partitioned Bloom filters in Section 5.3. In Section 5.4 we
present an extensive experimental evaluation for all proposed approaches.

5.1 Cardinality Estimation for standard Bloom Filters

We now show how to estimate the number of distinct elements hashed in a standard Bloom
filter and derive probabilistic bounds for the estimation. Estimation requires only the number
of true bits in the Bloom filter, and the Bloom filter configuration, i.e., number of hash func-
tions and Bloom filter length. Briefly, the analysis proceedsas follows. With Lemma 1 we
estimate the expected number of true bits in a Bloom filter, given that it containsn elements.
This lemma is required for deriving the probabilistic bounds. Following, we estimate the
number of elements in a Bloom filter, given the number of true bits. Finally, in Theorem 1

15

we derive probabilistic bounds for the number of elements added to a Bloom filter, given the
number of true bits.

Lemma 1 The expected number of true bits in a Bloom filter of length m with k hash func-

tions after n elements were hashed is:Ŝ(n) = m ×
(

1−
(

1− 1
m

)kn
)

. Also, the following

inequalities hold:

Upper bound: The probability of the number of true bits to be more than(1+ δ) ×
Ŝ(n) is P(# true bits> (1+ δ) × Ŝ(n)|n) ≤ [eδ/(1+ δ)(1+δ)]Ŝ(n) for δ ≥ 0.

Lower bound: The probability of the number of true bits to be less than(1 − δ) ×
Ŝ(n) is P(# true bits< (1− δ) × Ŝ(n)|n) ≤ e−Ŝ(n)δ2/2 for δ ≥ 0.

Proof Given a Bloom filter of lengthm with k hash functions andn elements hashed into
it. We define the binary random variablesZ1,Z2, . . .Zm whereZi is interpreted to be the
indicator variable for the event that theith bit in the Bloom filter is set to true. The probability

that theith bit is set to true isP[i = true] = 1−
(

1− 1
m

)kn
. Having a Bloom filter of lengthm,

the expected number of true bits equals toŜ(n) =
∑m

i=1 P[i = true] = m×
(

1−
(

1− 1
m

)kn
)

.

The bounds follow directly from the Chernoff inequality, by assuming (as is standard in the
analysis of Bloom filters) that the random variablesZ1,Z2, . . .Zm are independent. For the
lower bound, we use the simplified form proposed in [28], pp. 69–70. ut

We now estimate the number of elements hashed in a Bloom filterbased on the number
of true bits in the Bloom filtert. We denote byŜ−1(t) the inverse ofŜ(n), so thatŜ−1(t)
returns the number of elements that would result on an expected number oft true bits in the
Bloom filter. We findŜ−1(t) using the probability of a bit to be true:

P[i = true] =
t
m
= 1−

(

1−
1
m

)kŜ−1(t)

⇒

(

1−
1
m

)kŜ−1(t)

= 1−
t
m
⇒

Ŝ−1(t) =
ln

(

1− t
m

)

k× ln
(

1− 1
m

) (3)

Ŝ−1(t) is the maximum likelihood value for the number of hashed elements given the
state of the Bloom filter, and can be used as a rough estimate when a single number of
hashed elements is required. However, strict error marginscan only be derived for intervals
of set cardinalities. The following theorem provides for a given interval the probability that
the real cardinality of the set is indeed within the given bounds.

Theorem 1 Given a Bloom filter BF of length m with k hash functions and t bits set to true.
Let Ŝ−1(t) denote the expected number of elements in a Bloom filter, given that the Bloom
filter has t bits set to true. Then, for any nl , nr such that nl ≤ Ŝ−1(t − 1) andŜ−1(t + 1) ≤ nr ,
the number of elements hashed in BF lies in the range(nl , nr) with a probability of at least

1− et−1−Ŝ(nl) × [Ŝ(nl)/(t − 1)](t−1) − e−
(t+1−Ŝ(nr))2

2Ŝ(nr) .

Proof If the number of elements isn ≤ nl , thenP(# true bits≥ t|n) ≤ P(# true bits≥ t|nl).
Choosingnl andδl such that (1+ δl)× Ŝ(nl) < t, we obtain by Lemma 1 that this probability
is P(# true bits> (1 + δl) × Ŝ(nl)|nl) ≤ [eδl/(1 + δl)(1+δl)]Ŝ(nl). Similarly, if the number of
elements isn ≥ nr , thenP(# true bits≤ t|n) ≤ P(# true bits≤ t|nr). Choosingnr andδr

16

such that (1− δr) × Ŝ(nr) > t, we obtain by lemma 1 that this probability isP(# true bits<
(1− δr) × Ŝ(nr)|nr) ≤ e−Ŝ(nr)δ2r /2.

For choices ofnl , δl , nr , δr as described above, we get that with probability 1− [eδl /(1+
δl)(1+δl)]Ŝ(nl) −e−Ŝ(nr)δ2r /2, the number of elements is in the range (nl , nr). We compute a value

for δl such that (1+ δl) × Ŝ(nl) < t. Clearly,δl =
t−1−Ŝ(nl)

Ŝ(nl)
satisfies the inequality. Similarly,

we compute a value forδr such that (1− δr) × Ŝ(nr) > t. Clearly,δr =
Ŝ(nr)−t−1

Ŝ(nr)
satisfies the

inequality.

We conclude that with probability of at least 1−e−
(t+1−Ŝ(nr))2

2Ŝ(nr) −e(t−1−Ŝ(nl))×[Ŝ(nl)/(t−1)](t−1),
the number of elements is in the range (nl , nr). ut

Theorem 1 enables computing the cardinality of a set based onits Bloom filter represen-
tation, and in particular, on the Bloom filter length, numberof hash functions, and number
of bits set to true. It also allows computing of upper and lower cardinality bounds, for set-
tings where probabilistic guarantees are important. As ourexperimental evaluation shows
(Section 5.4), for Bloom filters of reasonable densities, i.e., that can be used for membership
tests, estimations computed with Theorem 1 are highly accurate and probabilistic bounds
are tight.

5.2 Cardinality Estimation for Bloom Filter Union and Intersection

Distributed algorithms frequently need to estimate the cardinality of a union or intersection
of remote sets, having only the Bloom filters corresponding to the sets. For example, a query
planner for a distributed database may need to estimate the cardinality of an equi-join or of
a union of two remote tables, to devise the optimal query execution plan. Similarly, peers
in a P2P network may need to coordinate for executing a query,by exchanging their Bloom
filters. We describe these and other scenarios in detail in Section 6.

With respect to cardinality of the union, we note that a filterproduced by bitwise-OR
merging of the Bloom filtersBF1, BF2, . . . , BFn (the Bloom filters of setsS1,S2, . . . ,Sn) is
identical to the Bloom filter of the setS∪ := S1 ∪ S2 ∪ . . . ∪ Sn. Therefore, we estimate the
cardinality of the setS∪ by applying Theorem 1 on the bitwise-OR produced Bloom filter.

Estimating the cardinality of the intersection of two or more sets from their Bloom
filters is slightly more complicated, because merging with bitwise-AND does not result to a
standard Bloom filter on which Theorem 1 can be applied. In particular, the same bits may
have been set in the two individual Bloom filtersBF1 andBF2 from two different elements,
the one belonging only to the first set and the other belongingonly to the second set. These
bits will be incorrectly set to true in the AND-merged Bloom filter, i.e., the Bloom filter
produced by mergingBF1 andBF2 with bitwise-AND. Therefore, the resulting density of
the AND-merged Bloom filter will not be representative of thecardinality of the intersection
of the two sets.

The probability for such a bit collision can be high, especially in dense Bloom filters.
Consider for instance two setsS1 andS2, created by randomly selecting elements from a
very large universe of elements. LetBF1 andBF2 be the Bloom filters of the two sets, both
with lengthm andk hash functions.BF∧ represents the Bloom filter produced by bitwise-
AND merging ofBF1 andBF2. Then, the probability for each bit to be set inBF1 andBF2

from two different elements, thus also falsely be inBF∧ is: (1− (1− 1
m)kn1)× (1− (1− 1

m)kn2).
For dense Bloom filters, this probability is high and can significantly influence the density of
BF∧, and thus falsify our previous cardinality estimation function. However, we can use the

17

density of the initial Bloom filters for estimating the number of these random bit collisions
(we refer to the number of these collisions asrbits). Then, we can subtractrbits from the
number of true bits inBF∧, and use this number for the estimation of the cardinality of
S1 ∩ S2.

For the analysis we use the following notations:S1∩2 denotes the intersection of setsS1

andS2. The Bloom filters of the sets are denoted withBF1, BF2 andBF∩. With BF∧ we
refer to the Bloom filter produced by mergingBF1 andBF2 with bitwise-AND. Finally,tx

refers to the number of true bits in Bloom filterBFx, e.g.,t∧ denotes the count of true bits in
BF∧.

Lemma 2 Let BF1, BF2, and BF∩, denote the Bloom filters of S1, S2 and S1 ∩ S2 respec-
tively. All filters have length m and use the same k hash functions. BF∧ denotes the Bloom
filter created by bitwise AND of BF1 and BF2. The expected number of bits that are set in
BF∧ but are not set in BF∩ is r̂bits =

(t1−t∩)×(t2−t∩)
m−t∩

.

Proof For the proof we represent Bloom filters as a set of numbers, sothati f f (BF[i] = true)
theni ∈ S ETBF[i] . By definition ofrbits:

|S ETBF∧ | = |S ETBF∩ | + rbits

where |S ETx| denotes the cardinality ofS ETx. Assuming that the hash functions in each
Bloom filter are independent (a standard assumption for Bloom filters), the elements in
S ETBF1\S ETBF∩ are independent from the elements inS ETBF2\S ETBF∩ . Thus the probabil-

ity of a number to occur in bothS ETBF1\S ETBF∩ andS ETBF2\S ETBF∩ is
|S ETBF1 |−|S ETBF∩ |

m−|S ETBF∩ |
×

|S ETBF2 |−|S ETBF∩ |

m−|S ETBF∩ |
.

This gives a maximum likelihood value forrbits:

r̂bits = (m− |S ETBF∩ |) ×
|S ETBF1 |−|S ETBF∩ |

m−|S ETBF∩ |
×
|S ETBF2 |−|S ETBF∩ |

m−|S ETBF∩ |

=
(t1−t∩)×(t2−t∩)

m−t∩

(4)

ut

Similar to the analysis for standard Bloom filters, we define afunction for estimating the
number of true bits in the Bloom filterBF∧, assuming that the number of elements in the
intersection|S1 ∩ S2| is known.

Lemma 3 Let BF1 and BF2 be the Bloom filters of sets S1 and S2 respectively. The
Bloom filters have length m and share the same k hash functions. BF∧ is the Bloom
filter created by a bitwise AND of BF1 and BF2. Then, the functionŜ(t1, t2, n∩) :=
t1×t2+m×(1−(1−1/m)kn∩)×(m−t1−t2)

m×(1−1/m)k×n∩
returns the expected number of bits that are set in BF∧, where

n∩ denotes the cardinality of S1 ∩ S2, and tx denotes the count of the true bits set in the
Bloom filter BFx. Also the following inequalities hold:

Upper bound: The probability that the number of true bits in BF∧ is more than
(1+ δ)× Ŝ(t1, t2, n∩) is P(# true bits> (1+ δ)× Ŝ(t1, t2, n∩)|n) ≤ [eδ/(1+ δ)(1+δ)]Ŝ(t1,t2,n∩)

for δ ≥ 0.
Lower bound: The probability that the number of true bits in BF∧ is less than

(1− δ)× Ŝ(t1, t2, n∩) is P(# true bits< (1− δ)× Ŝ(t1, t2, n∩)) ≤ e−Ŝ(t1,t2,n∩)×δ2/2 for δ ≥ 0.

18

Proof

t∧ =t∩ + rbits

=t∩ +
(t1 − t∩) × (t2 − t∩)

m− t∩

=
t1 × t2 + t∩ × (m− t1 − t2)

m− t∩

=
t1 × t2 +m×

(

1− (1− 1/m)kn∩
)

× (m− t1 − t2)

m−m×
(

1− (1− 1/m)kn∩
)

=
t1 × t2 +m×

(

1− (1− 1/m)kn∩
)

× (m− t1 − t2)

m× (1− 1/m)kn∩
(5)

The bounds follow directly from Chernoff inequalities, as in Lemma 2.ut

Next, we estimate the number of elements in the intersectionS1 ∩ S2 from the Bloom
filters BF1, BF2 and BF∧. We denote byŜ−1(t1, t2, t∧) the inverse ofŜ(t1, t2, n∩), so that
givent1, t2 andt∧, functionŜ−1(t1, t2, t∧) returns the expected cardinality ofS1∩S2. Similar
to the analysis for the single Bloom filter, we can findŜ−1(t1, t2, t∧) using the probability of
a bit to be true inBF∧:

P(i = true) =
t∧
m

=
t1 × t2 +m×

(

1− (1− 1/m)k×Ŝ−1(t1,t2,t∧)
)

× (m− t1 − t2)

m2 −m2 ×
(

1− (1− 1/m)k×Ŝ−1(t1,t2,t∧)
) ⇒

Ŝ−1(t1, t2, t∧) =
ln

(

m− t∧×m−t1×t2
m−t1−t2+t∧

)

− ln (m)

k× ln (1− 1/m)
(6)

Ŝ−1(t1, t2, t∧) is the most likely number of elements inS1 ∩ S2. Similar to the normal
Bloom filter cardinality estimation (Theorem 1), we can set upper and lower bounds for
the estimation ofŜ−1(t1, t2, t∧). The following theorem provides for a given interval the
probability that the real cardinality ofS1 ∩ S2 is indeed within the given bounds.

Theorem 2 Let BF1 and BF2 be the Bloom filters of S1 resp. S2, with length m and k hash
functions. BF∧ refers to the Bloom filter produced by bitwise AND of BF1 and BF2, and
with tx we denote the count of the true bits set in the Bloom filter BFx. For any nl , nr such
that nl < Ŝ−1(t1, t2, t∧) < nr , the number of elements in the intersection S1 ∩ S2 lies in the
range(nl , nr) with probability of at least

1−

(

Ŝ(t1, t2, nl)
t∧ − 1

)t∧−1

e(t∧−1−Ŝ(t1,t2,nl)) − e
−

(t∧+1−Ŝ(t1,t2,nr))2

2×Ŝ(t1,t2,nr)

Proof Via Chernoff bounds, similar to the proof for Theorem 1.

Theorem 2 does not directly hold for Bloom filters created by the intersection of more
than two Bloom filters. It is not possible to derive closed-form equations for the Theo-
rem which address an arbitrary number of Bloom filters, and therefore we do not present
this analysis here. Nevertheless, the corresponding equations can be extended for individual
cases, following the example for the 2 Bloom filters.

19

5.3 Cardinality Estimation for Block-partitioned Bloom filters

The proposed cardinality estimation approach presented inSection 5.1 can also be used
for Block-partitioned Bloom filters, i.e., by considering one of the blocks to estimate the
cardinality of the BBF. However, we can get more accurate cardinality estimation and stricter
bounds if we account for allλ blocks in the Block-partitioned filter. Since the analysis is very
similar to the analysis presented at Section 5.1, we only present sketches of the proofs.

First we find the expected number of true bits in BBF aftern elements are hashed in the
Bloom filter.

Lemma 4 The expected number of true bits in a Bloom filter withλ blocks, each of length
mb and with kb hash functions after n elements were hashed is:Ŝ(n) = λmb

(

1− (1− 1
mb

)kbn
)

.
Also, the following inequalities hold:

Upper bound: The probability of the number of true bits to be more than(1+ δ) ×
Ŝ(n) is P(# true bits> (1+ δ) × Ŝ(n)|n) ≤ [eδ/(1+ δ)(1+δ)]Ŝ(n) for δ ≥ 0.

Lower bound: The probability of the number of true bits to be less than(1 − δ) ×
Ŝ(n) is P(# true bits< (1− δ) × Ŝ(n)|n) ≤ e−Ŝ(n)δ2/2 for δ ≥ 0.

Sketch Each block in a BBF is an independent Bloom filter. Therefore,the expected number
of true bits in a block which containsn elements can be found with Lemma 2, and it is
Ŝblock(n) = mb(1 − (1 − 1

mb
)kbn). Since the Block-partitioned Bloom filter hasλ blocks, the

expected number of true bits in all blocks isŜ(n) = λ × Ŝblock(n) = λmb

(

1− (1− 1
mb

)kbn
)

.
Bounds follow directly from Chernoff bounds. ut

The following theorem provides for a given interval the probability that the cardinality
of the BBF is within this interval.

Theorem 3 Given a Block-partitioned Bloom filter BBF withλ blocks, and t bits set to
true. Each of the blocks has length mb and kb hash functions. Then, the expected number of
distinct elements hashed in BBF isŜ−1(t) = log(1−t/(λmb))

kb log(1−1/mb) . Furthermore, for any nl , nr such

that nl ≤ Ŝ−1(t−1) andŜ−1(t+1) ≤ nr , the number of elements hashed in the Bloom filter lies

in the range(nl , nr) with a probability of at least1−e(t−1−Ŝ(nl))×[Ŝ(nl)/(t−1)](t−1)−e−
(t+1−Ŝ(nr))2

2Ŝ(nr) .

Sketch Let Ŝ−1(t) denote the number of elements that would result on an expected number
of t true bits in BBF. The probability of a random biti from BBF to be set to true is

P[i = true] = t/(λmb) = 1− (1− 1/mb)kbŜ−1(t) ⇒

Ŝ−1(t) =
log(1− t

λmb
)

kb log(1− 1/mb)

Bounds follow directly from Chernoff bounds, as in Theorem 1.ut

5.4 Evaluation

While our analysis already offers probabilistic bounds for cardinality estimation, we also
evaluated experimentally the influence of Bloom filter length, number of hash functions,
and number of blocks, on estimation accuracy. The experiments covered all three cases,
standard Bloom filters, Bloom filter intersection, and Block-partitioned Bloom filters.

20

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

E
st

im
at

ed
 s

et
 s

iz
e

Actual set size

 Density
 50%

 Density
 70%

 Density
 80%

Estimated
Bound=0.7
Bound=0.9

 0

 10000

 20000

 30000

 40000

 0 10000 20000 30000 40000

E
st

im
at

ed
 s

et
 s

iz
e

Actual set size

 Density
 50%

 Density
 70%

 Density
 80%

Estimated
Bound=0.7
Bound=0.9

Fig. 5 Estimation accuracy for standard Bloom filters: a. 8192 bits, 2 hash functions, b. 32 Kbits, 2 hash
functions.

All experiments shared the same experimental setup, which we present here. Then, in
the following sections we present and discuss the results for the three structures separately.
Based on the experimental results, we also point out some practical considerations with
respect to the optimal choice of Bloom filter configuration for cardinality estimation.

For each individual experiment, we first generated a setS of cardinalityc, and created its
(Block-partitioned) Bloom filter representation. Using the filter representation, we estimated
the cardinality ofS according to the theorems presented earlier in this section, and evaluated
the accuracy of the estimation. For the case of AND-merged Bloom filters, we generated an
additional setS′, having a pre-configured overlap withS, i.e., |S ∩ S′ | = ovl. We then
estimated the cardinality of|S ∩ S′| using the AND-merged Bloom filters of the two sets,
and evaluated the accuracy of the estimation.

To assess the influence of different factors, we varied the Bloom filter length, the cardi-
nality c, and the number of hash functions. For the case of Block-partitioned Bloom filters,
we also varied the number of Blocks, whereas for the AND-merged Bloom filters we var-
ied the size of the overlap. For each setting, we repeated theexperiment multiple times to
even out random effects. We report average, maximum, and standard deviation ofthe actual
relative error after 1000 repetitions, and analytical bounds for the probabilities 0.7 and 0.9.

In the next section we describe and discuss our findings for standard Bloom filters.
Results corresponding to AND-merged Bloom filters are presented in Section 5.4.2. Sec-
tion 5.4.3 discusses the evaluation results for Block-partitioned Bloom filters.

5.4.1 Cardinality Estimation for Bloom Filters

We evaluated cardinality estimation for standard Bloom filters varying the Bloom filter
length between 8192 bits and 8192 Kbits, and the number of hash functions between 1 and
10. For each experimental configuration, we have set the maximum cardinality ofS to the
one that resulted to a Bloom filter of density 0.9. Cardinality estimation and the respective
probabilistic bounds were computed using Theorem 1.

Influence of set cardinality.Figure 5 plots the relation between the actual and estimated
cardinality. Each experiment repetition is marked as a dot;for clarity, only the first 10 rep-
etitions are included in the figure. We also include the probabilistic bounds for each setting
for comparison purposes. The results are for Bloom filters oflength 8 Kbits and 32 Kbits,
each with 2 hash functions. To show how Bloom filter density affects estimation accuracy,
we have also marked the points where the density of the Bloom filter reaches 50%, 70%, and
80%. Table 3 presents further details for some selected configurations, after 1000 repetitions.

21

 0

 0.001

 0.002

 0.003

 0.004

1 2 3 4 5

R
el

at
iv

e
er

ro
r

Set size (Millions)

128Kbits
256Kbits
512Kbits

2048Kbits
4096Kbits

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

1 2 3 4 5

R
el

at
iv

e
er

ro
r

Set size (Millions)

k=1
k=2
k=5

k=10

Fig. 6 Estimation accuracy for standard Bloom filters: a. Influenceof Bloom filter length, b. Influence of
number of hash functions.

We see that estimations are always very close to the actual Bloom filter cardinalities.
This is observed for all Bloom filter lengths. In fact, maximum observed relative error was
only 0.04, and it occurred for the Bloom filter of 8 Kbits, whendensity was already 0.9 (cf.
Table 3). Note that the corresponding Bloom filter with this density was already useless for
membership tests, as it exhibited a false positive probability of 0.81. We also see that the
probabilistic bounds are very tight for moderate densities, i.e., densities up to 0.7. Standard
deviation of the relative error is also small, and the maximum error is close to the average
error. The same outcome is observed over the whole range of tested Bloom filter lengths and
densities.

We also see that our analysis offers an appropriate and efficient approach for counting the
distinct elements in huge sets. For example, a Bloom filter of4096 Kbits (0.5 Mbyte) with 2
hash functions is already sufficient for accurately estimating the cardinalities of sets having
as much as 5 million distinct elements (Figure 6 a.). For efficiently counting 10 million
distinct elements, a Bloom filter of 1 Mbyte with 2 hash functions is sufficient (Table 3).

Influence of Bloom filter length.Figure 6 a. plots the average relative error with respect
to the number of elements for Bloom filters of various lengths, all with 2 hash functions.
We see that for the same number of elements, a larger Bloom filter yields higher estima-
tion accuracy, as expected. Furthermore, probabilistic bounds are tighter, and the standard
deviation of relative error is lower for larger Bloom filters.

Table 3 also shows that larger Bloom filters exhibit higher accuracy for the same density.
For example, for a density of 0.534, the average relative error for a filter of 256 Kbits is
0.0013, compared to 0.0009 for the filter of 512 Kbits with thesame density. The same
effect is observed with respect to maximum relative error and standard deviation. Moreover,
probabilistic bounds are tighter in the larger Bloom filters. The practical significance of this
result is that applications for which tight probabilistic bounds are important, should create
larger Bloom filters so that they maintain low density. Counting the elements of a stream is
one such application for which tight probabilistic bounds may be desired. On the other hand,
when a rough cardinality estimation is sufficient, e.g., when cardinality is used to optimize
Bloom joins, a smaller Bloom filter can also be used.

Influence of number of hash functions.Figure 6 b. shows the relative errors for Bloom
filters of length 2048 Kbits, for different numbers of hash functions. As expected, the num-
ber of hash functions also affects estimation accuracy. This effect is indirect, via density: by
increasing the number of hash functions, the resulting density increases, causing a higher
relative error. Therefore, Bloom filters with less hash functions can accommodate more el-

22

Length Hashes Items Density Relative error Probabilistic bounds
(Kbits) Avg. Max. Std.dev.
Only number of elements varies

8 2 3000 0.519 7.2E-3 0.032 5.77E-3 70%:2837–3161
90%:2793–3204

8 2 9000 0.889 9.44E-3 0.040 7.23E-3 70%:8103–9887
90%:7879–10111

Bloom filter length varies
256 2 100000 0.534 1.34E-3 5.37E-3 1.02E-3 70%:99044–100955

90%:98764–101235
256 2 200000 0.783 1.44E-3 6.38E-3 1.06E-3 70%:197523–202475

90%:196808–203190
512 2 200000 0.534 8.76E-4 3.35E-3 6.66E-4 70%:198647–201350

90%:198250–201747
8192 2 1E7 0.908 1.13E-3 2.2E-3 4.04E-4 70%:9964361–10035632

90%:9953888–10046105
Number of hash functions varies
2048 1 500000 0.212 3.65E-4 1.64E-3 2.8E-4 70%:497123–502875

90%:496386–503611
2048 10 500000 0.908 6.46E-4 2.96E-3 4.91E-4 70%:496439–503559

90%:495404–504594

Table 3 Estimation accuracy for standard Bloom filters.

ements, and can offer a more accurate cardinality estimation. Therefore, withrespect to
cardinality estimation, using a single hash function is thebest choice.

As explained in Section 2, the optimal number of hash functions for membership test
is the one which achieves a density closest to 0.5. This seemsto imply a trade-off between
optimizing a Bloom filter for membership tests and for cardinality estimation. However, as
long as the density of the Bloom filter stays on a levelacceptable for membership tests, the
effect of the number of hash functions in cardinality estimation accuracy is negligible. Thus,
applications that use the Bloom filters for both membership tests and cardinality estimation
should select the number of hash functions such that false positive probability for member-
ship test is minimized. Applications that use Bloom filters solely for cardinality estimation
should use only one hash function, which is the optimal number with respect to cardinality
estimation.

In summary, experimental results confirm the suitability ofTheorem 1 for estimating
Bloom filter cardinality. They show that cardinality estimation is highly accurate, even for
very dense Bloom filters and that probabilistic bounds are tight for moderate Bloom filter
densities.

5.4.2 Cardinality Estimation for Bloom Filter Intersection

For evaluating experimentally the estimation accuracy of Theorem 2 we have constructed
sets with various cardinalities and intersection ratios, and used their Bloom filters to estimate
the cardinality of their intersection. Similar to the previous experiments, the evaluation was
repeated for multiple Bloom filter configurations, with Bloom filter lengths in the range of
8192 bits to 8192 Kbits, and with 1 to 10 hash functions.

Unless otherwise noted, the following results correspond to the configuration where the
the two setsS andS′ have the same cardinaltiyc, and an intersection ofc/2 elements. For
each Bloom filter configuration, the maximum cardinality of the sets was set to the one that
results to a filter with density 0.9.

23

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

E
st

im
at

ed
 in

te
rs

ec
tio

n
si

ze

Actual intersection size

 50%
 Density

 70%
 Density

 80%
 Density

Estimated
Bound=0.7
Bound=0.9

 0

 10000

 20000

 30000

 40000

 0 10000 20000 30000 40000

E
st

im
at

ed
 in

te
rs

ec
tio

n
si

ze

Actual intersection size

 50%
 Density

 70%
 Density

 80%
 Density

Estimated
Bound=0.7
Bound=0.9

Fig. 7 Estimation accuracy for Bloom filter Intersection: a. 16 Kbits, 2 hash functions, b. 64 Kbits, 2 hash
functions.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

0.5 1 1.5 2 2.5

R
el

at
iv

e
er

ro
r

Intersection size (Millions)

128Kbits
256Kbits
512Kbits

2048Kbits
4096Kbits

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

0.5 1 1.5 2 2.5

R
el

at
iv

e
er

ro
r

Intersection size (Millions)

k=1
k=2
k=5

k=10

 0

 0.004

 0.008

 0.012

 0.016

 0.02

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
er

ro
r

Intersection size (Millions)

128Kbits
256Kbits
512Kbits

2048Kbits
4096Kbits

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
er

ro
r

Intersection size (Millions)

128Kbits
256Kbits
512Kbits

2048Kbits
4096Kbits

Fig. 8 Estimation accuracy for Bloom filter Intersection: a. Varying the cardinalities of both sets, b. Varying
the number of hash functions, c. Varying the overlap ratio, d. Varying the cardinality of only one set.

Influence of the set cardinalities.Figure 7 plots the estimated intersection cardinality
in correlation to the actual intersection cardinality, forBloom filters of 16 and 64 Kbits
with 2 hash functions. Similar to the figures for standard Bloom filters, this figure is also
annotated with probabilistic bounds and density marks. In Table 4 we present detailed results
for sample configurations.

The experimental results for Bloom filter intersection are similar to the results for stan-
dard Bloom filters. Cardinality estimation is highly accurate for Bloom filters of reasonable
densities, i.e., which could also be used for the purpose of membership tests. Also, the ob-
served maximum relative error and the standard deviation are very small, and probabilistic
bounds are tight. Therefore, an application which uses AND-merged Bloom filters for mem-

24

Length Hashes |S∩S′ | Density Relative error Probabilistic bounds
(Kbits) Avg. Max. Std.dev.
Only number of elements varies

8 2 2000 0.478 0.016 0.060 0.012 70%:1736–2262
90%:1670–2329

8 2 5000 0.852 0.034 0.177 0.026 70%:2606–7379
90%:2162–7823

Bloom filter length varies
256 2 50000 0.386 2.6E-3 0.012 1.95E-3 70%:49022–50974

90%:48774–51223
256 2 100000 0.667 3.64E-3 0.014 2.67E-3 70%:96024–103967

90%:95020–104970
512 2 100000 0.386 1.86E-3 8.39E-3 1.41E-4 70%:98620–101376

90%:98267–101730
8192 2 5E6 0.844 1.02E-3 4.05E-3 7.6E-4 70%:4908341–5091644

90%:4885133–5114852
Number of hash functions varies
2048 1 250000 0.124 7.07E-4 2.94E-3 5.39E-4 70%:248576–251423

90%:248211–251788
2048 10 250000 0.844 1.91E-3 8.57E-3 1.5E-3 70%:240923–259072

90%:238656–261338

Table 4 Estimation accuracy for Bloom filter intersection.

bership testing already achieves high cardinality estimation accuracy. Nevertheless, average
relative errors are still low even even for extremely dense AND-merged Bloom filters which
would otherwise be considered useless for membership testing.

Influence of Bloom filter length.In Figure 8 a. we plot the average relative error for
Bloom filters of various lengths, all with 2 hash functions. For the same set of elements, the
estimation clearly becomes more accurate by increasing theBloom filter length. Similarly,
for a fixed density, relative error reduces when Bloom filter length increases (as an example
compare the results for 256 Kbits and 512 Kbits filters in Table 4). Bloom filter length also
affects standard deviation and tightness of probabilistic bounds: by increasing the length,
probabilistic bounds get tighter and standard deviation ofrelative error is reduced. There-
fore, an application developer can choose arbitrarily tight probabilistic bounds by increasing
the length of the Bloom filters.

Influence of number of hash functions.Figure 8 b. presents the average relative error
for AND-merged Bloom filters of 2048 Kbits, with different numbers of hash functions.
We see that estimation accuracy improves when the number of hash functions is reduced,
for the same reason as with the standard Bloom filter. Nevertheless, the difference between
relative errors is negligible when density of the AND-merged filter is in levels acceptable
for membership testing. Thereby, Bloom filters which are optimized for membership tests
already offer significantly accurate cardinality estimation, very close to the optimal one.

Influence of intersection characteristics.In the previous experiments, the two setsS
andS′ were always constructed with the same cardinalityc and with an overlap ofc/2. To
evaluate the generic applicability of Theorem 2, we also conducted experiments with sets of
different overlap ratios, and of different cardinalities.

Figures 8 c. and d. plot the average relative error corresponding to the cardinality of
the intersection, for the two different cases. For Figure 8 c. the two sets were generated
with the same cardinalityc, and with an intersection cardinality in the range of [0. . . c].
The cardinality of the two sets was set to the one leading to Bloom filters of density 0.5.
For Figure 8 d.,S was generated with a fixed cardinalityc, whereasS′ was generated with

25

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 0.1 0.2 0.3 0.4 0.5 0.6

R
el

at
iv

e
E

rr
or

rbits: true bits in BF^

E1
E2
E3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400

r b
its

: t
ru

e
bi

ts
 in

 B
F

^

Intersection cardinality (Thousands)

E1
E2
E3

Fig. 9 a. Influence of the ratio ofrbits to true bits to the relative error, b. Ratio ofrbits to true bits for the
different configurations

a cardinalityc′ in the range of [0. . . c], and with an intersection ofc′/2 elements withS.
Table 5 presents detailed results for sample configurations, focusing on the Bloom filter of
2048 Kbits, with 2 hash functions.

We observe that for both experimental setups, relative error is reduced with an increase
in the intersection cardinality. This observation is consistent for all Bloom filter lengths. This
is an interesting result, since at first sight it appears to becontradicting to the results reported
earlier (e.g., Figures 8 a. and b.), where the relative erroris increased with the cardinality
of the intersection. An indication for why this happens is derived from Figure 9 a., which
shows the relative error corresponding torbits : tb(BF∧), i.e., the ratio ofrbits to true bits
in the AND-merged Bloom filter. The figure includes the results for the three experimental
setups described earlier, denoted as follows:

– [E1:] Varying the cardinalities of both sets, with|S| = |S′| = c, and |S ∩ S′| = c/2
(Figure 8 a.).

– [E2:] Keeping the cardinalities of both sets fixed and equal, and varying the overlap
|S ∩ S′| in the range [0. . . c/2] (Figure 8 c.).

– [E3:] Keeping the cardinality ofS fixed and varying the cardinality ofS′. The overlap
is set to|S′|/2 (Figure 8 d.).

We see that the ratiorbits : tb(BF∧) determines the relative error. For E1, increasing
the intersection cardinality leads to an increase of this ratio, because therbits increase more
rapidly than the true bits in the Bloom filter intersection (cf. Fig. 9 b.). On the other hand,
for experiments E2 and E3, increasing the intersection cardinality results to a decrease in
this ratio. In particular, for E2, therbits constantly decrease with an increase of the overlap,
thereby decreasing the ratio ofrbits : tb(BF∧). For E3,rbits and true bits increase in parallel,
but the true bits increase in a faster rate, which results in adecreasing ratio. The relative
error decreases with this ratio.

Summarizing the experimental results, Theorem 2 estimateswith high accuracy the car-
dinality of the intersection of the two sets using their Bloom filter representations. Tightness
of the probabilistic bounds depends on the density of the twoBloom filters, but even for
high densities, the probabilistic bounds are sufficiently tight for practical concerns.

5.4.3 Cardinality estimation for Block-partitioned BloomFilters

For the evaluation of cardinality estimation for Block-partitioned Bloom filters, we varied
the number of blocks between 1 and 10, and the block length between 4 and 4096 Kbits.

26

|S| |S′ | |S ∩ S′| rbits:true Relative error Probabilistic bounds
bits in BF∧ Avg. Max. Std.dev.

Overlap ratio varies
800000 800000 50000 0.842 0.012 0.054 9.26E-3 70%:46635–53363

90%:45772–54225
800000 800000 100000 0.703 5.70E-3 0.023 4.51E-3 70%:96731–103266

90%:95892–104104
800000 800000 200000 0.474 2.57E-3 0.011 1.93E-3 70%:196915–203083

90%:196123–203874
800000 800000 400000 0.177 8.85E-4 4.52E-3 6.73E-4 70%:397245–402753

90%:396539–403458
Cardinality of ofS′ varies
800000 100000 50000 0.327 2.72E-3 0.010 2 E-3 70%:49160–50839

90%:48945–51054
800000 200000 100000 0.306 1.86E-3 8.66E-3 1.42E-3 70%:98789–101209

90%:98480–101519
800000 400000 200000 0.264 1.34E-3 5.13E-3 1.02E-3 70%:198217–201782

90%:197760–202239
800000 800000 400000 0.177 8.85E-4 4.52E-3 6.73E-4 70%:397245–402753

90%:396539–403458

Table 5 Estimation accuracy for Bloom filter intersection - Influence of intersection characteristics.

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

E
st

im
at

ed
 s

et
 s

iz
e

Actual set size

 Density
 50%

 Density
 70%

 Density
 80%

Estimated
Bound=0.7
Bound=0.9

 0

 10000

 20000

 30000

 40000

 0 10000 20000 30000 40000

E
st

im
at

ed
 s

et
 s

iz
e

Actual set size

 Density
 50%

 Density
 70%

 Density
 80%

Estimated
Bound=0.7
Bound=0.9

Fig. 10 Estimation accuracy for Block-partitioned Bloom filters: a. 4096 bits per block, and, b. 16384 bits
per block, with 2 blocks and 1 hash function per block.

All blocks were initialized with a single hash function, as explained in Section 3. For each
BBF configuration, we have set the maximum cardinality ofS to the one that resulted to a
BBF of density 0.9. To enable comparison of the results with the results for standard Bloom
Filters, in the following experiments we have configured theBBFs such that their cumulative
memory requirements corresponds to the memory requirements of the Bloom filters used in
Section 5.4.1.

Influence of set cardinality.Figure 10 shows the relation between the estimated and
actual set cardinality for two sample BBF configurations, with blocks of 4 Kbits and 16
Kbits. Table 6 presents further results for selected configurations.

We observe that cardinality estimation accuracy and tightness of probabilistic bounds are
comparable to the corresponding accuracy and bounds for standard Bloom filters. In prac-
tice, the difference in estimation accuracy is negligible, i.e., breaking the Bloom filters into
blocks does not negatively affect cardinality estimation accuracy. Recall from Section 4.1
that this is also the case with respect to false positive probability for membership tests.

27

 0

 0.001

 0.002

 0.003

 0.004

1 2 3 4 5

R
el

at
iv

e
er

ro
r

Set size (Millions)

2x64Kbits
2x128Kbits
2x256Kbits

2x1024Kbits
2x2048Kbits

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

1 2 3 4 5

R
el

at
iv

e
er

ro
r

Set size (Millions)

1x2048Kbits
2x1024Kbits
5x409.6Kbits

10x204.8Kbits

Fig. 11 Estimation accuracy for Block-partitioned Bloom filters: a. Influence o Block length, b. Influence of
number of Blocks.

We also note that, similar to the case of standard Bloom filters, accuracy of cardinality
estimation depends on the density of the BBF. For sparse BBFs, estimated and actual cardi-
nalities differ only slightly; this difference increases for denser BBFs. Nevertheless, even for
extremely dense BBFs, estimated cardinality still remainsvery close to the actual value. As
expected, density also affects probabilistic bounds and standard deviation of relative error:
for lower densities, probabilistic bounds are significantly tighter and standard deviation of
relative error is also smaller.

Influence of block length.It is also interesting to see how block length affects cardinal-
ity estimation accuracy. Figure 11 a. plots relative error for Block-partitioned Bloom filters,
constructed with various block lengths. The presented results are for BBFs with 2 blocks.
We observe that increasing the block length for BBFs has a similar effect to increasing the
filter length for standard Bloom filters (cf. Figure 6 a.). In particular, for a fixed set, cardi-
nality estimations are more accurate at the BBFs with largerblocks. Furthermore, from the
detailed results in Table 6 we can see that increasing the Block length has also a positive
effect on probabilistic bounds and on standard deviation.

Finally, for a fixed density, relative error reduces when Block length increases (cf. Ta-
ble 6). For example, for a density of 0.534, the BBF with two blocks of 128 Kbits has average
relative error 1.21E-3, while the BBF with blocks of 256 Kbits has double the capacity for
the same density, and a relative error of only 8.89E-4.

Influence of number of blocks.Figure 11 b. shows average relative error in relation to
set cardinality for BBFs of different numbers of blocks. All presented results are for BBF
structures with cumulative length of 2048 Kbits, i.e., the block length is selected such that
the total structure length is 2048 Kbits. As expected, increasing the number of blocks has the
same effect as increasing the number of hash functions in standard Bloom filters. Relative
error increases with the number of blocks because length of each block is reduced linearly
with the number of blocks, and the BBFs become overly dense sooner. Thereby, with respect
to cardinality estimation, a smaller number of large blocksis preferable over more smaller
blocks.

We also see that for BBF densities suitable for membership tests, the effect of number
of blocks to cardinality estimation is negligible. For example, for 200 thousand elements,
all BBFs in Figure 11 b. have a relative error of 0.00045+/- 0.00005. Therefore, a system
that requires both membership tests and cardinality estimation should configure the BBF
for reducing the false positive probability for membershiptests and for increasing the re-

28

Block Blocks Items Density Relative error Probabilistic bounds
length
(Kbits) Avg. Max. Std.dev.
Only number of elements varies

4 2 3000 0.519 7.25E-3 0.030 5.47E-3 70%2837–3161
90%2794–3205

4 2 9000 0.889 9.19E-3 0.042 7.02E-3 70%8105–9893
90%7881–10117

Block length varies
128 2 100000 0.534 1.21E-3 6.29E-3 9.24E-4 70%99043–100955

90%98764–101234
128 2 200000 0.783 1.42E-3 7.37E-3 1.1E-3 70%197523–202474

90%196808–203189
256 2 200000 0.534 8.89E-4 3.9E-3 6.92E-4 70%198648–201351

90%198251–201748
4096 2 1E7 0.908 1.19E-3 2.5E-3 3.93E-4 70%9964361–10035631

90%9953887–10046105
Number of blocks varies; the total BBF length remains constant
2048 1 500000 0.212 3.68E-4 1.67E-3 2.8E-4 70%:497981–502018

90%:497385–502614
204.8 10 500000 0.908 6.4E-4 2.91E-3 4.64E-4 70%:496438–503559

90%:495404–504594

Table 6 Estimation accuracy for BBFs. Note that the cumulative length of the BBFs (i.e., Block length×
number of blocks) corresponds to the Bloom filter length in the results of Table 3.

duction flexibility, according to the analysis presented inSection 3. By doing so, cardinality
estimation will already be very accurate for most practicalapplications.

Summarizing, the experimental results confirm the suitability of Theorem 3 for cardi-
nality estimation for Block-partitioned Bloom filters. ForBBFs with moderate densities that
are acceptable for membership tests, the theorem obtains accurate cardinality estimations
and tight probabilistic bounds.

6 Applications

Block-partioned Bloom filters, as well as cardinality estimation, are useful for a wide range
of applications. In this section we describe a few areas where current approaches can benefit
from our contributions.

Distributed Query Processing.Cardinality estimation based on Bloom filters can pro-
vide the necessary statistics required for distributed query planning algorithms. In particular,
most of the query planning algorithms for distributed databases share the same idea [29]: the
query planner optimizes the execution order of the joins, byusing selectivity estimates for
each join to predict the network cost that each execution order would incur. Accurate selec-
tivity estimates lead to plans which save significant network resources. However, computing
the selectivity estimates requires extended network interaction between the query planner
and the participating databases. By using Bloom filters and the proposed probabilistic car-
dinality estimation, the query planner can efficiently compute accurate selectivity estimates.
For instance, to estimate the selectivity of an equi-join, the query planner can merge the
Bloom filter representations of the join attributes with bitwise-AND, and use the resulting
Bloom filter to estimate the cardinality of the join. The AND-merged Bloom filter can be
further sent to the corresponding databases, for enabling distributed Bloom joins [2,3].

29

Block-partitioned Bloom filters are useful for optimizing chains of Bloom joins (i.e.,
when more than two nodes participate). For chained Bloom joins, the query processing
involves finding the intersection ofn distributed setsS1,S2, . . . ,Sn, by using Bloom filters
for reducing the network cost. The Bloom join algorithm proceeds as follows: (a) the Bloom
filters BF1, BF2, . . . , BFn of the remote sets are collected in the coordinator, i.e., the query
initiator, (b) the Bloom filter of the intersection is estimated by joining the original Bloom
filters with bitwise-AND, (c) the Bloom filter of the intersection is propagated back to the
participating nodes for filtering out the elements that are not in the intersection, and, (d) the
elements that appear to be in the Bloom filter intersection are transmitted back to the query
initiator, where the actual intersection (join) is computed and the results are presented to
the user. At step (c) of the above algorithm, it is beneficial for the coordinator to adjust the
resolution of the intersection’s Bloom filter to its density[6]. However, rebuilding a smaller
Bloom filter from scratch is not possible, since the intersection is not yet materialized. If
BBFs are used instead, the coordinator can dynamically and inexpensively reduce the length
and minimize the required network resources.

Content Caching and Distribution Networks.Another application area for Block-
partitioned Bloom filters includes distributed systems that currently exchange Bloom filter
summaries of their contents over the network, for the purpose of distributed caching [14], or
for optimizing content distribution [23, 30]. Depending ontheir capabilities, nodes in these
systems may want to reduce the Bloom filter length before sending it over the network, for
saving network resources. For instance, in Summary Cache [14], weak nodes or nodes un-
der heavy load may choose to exchange smaller Bloom filters, for reducing their network
cost in the expense of more false positives. The optimal Bloom filter length depends on the
bandwidth of the sender and receiver, the cost of each false positive, the current network
load and other network characteristics. Therefore, a Bloomfilter may need to be reduced
to many different lengths during its lifetime. Rebuilding the Bloom filter from scratch each
time involves unnecessary delays and computational overhead, and requires keeping a copy
of the set which may be impossible, e.g., in streaming data. With BBFs, this reduction can
be performed dynamically and efficiently, and with a near optimal false positive probability.

P2P Systems.Block-partitioned and Dynamic Block-partitioned Bloom filters find a
wide range of applications in P2P networks. Currently, several P2P systems employ stan-
dard Bloom filters as summaries for reducing the network costs. For example, Bloom filters
are used for reducing the network resources [11, 15], and increasing the quality of the re-
sults [13]. All participating peers use Bloom filters of a fixed length, which is problematic
in real-world P2P systems because some peers have significantly larger collections than oth-
ers [31]. Also, peers with weaker network connections cannot reduce the length of their
Bloom filters dynamically. BBFs and D-BBFs are a good replacement of standard Bloom
filters for these systems, as they allow peers to dynamicallyadapt the Bloom filter length
based on their collection size and on network characteristics.

Other P2P systems employ Attenuated Bloom filters (ABFs) forenabling query rout-
ing [32, 33]. Briefly, an ABF is an array of standard equi-length Bloom filters. Each peer
constructs an ABF and uses it to summarize its contents (the first Bloom filter in the array),
the contents of its immediate neighbors (the second Bloom filter), the contents of its second-
order neighbors (the third Bloom filter), and so on. To limit the network requirements, the
higher-order ABFs are constructed by merging the corresponding Bloom filters with bitwise
OR. However, this merging sacrifices the mapping between elements and peers; it instead
creates a mapping between elements and paths. Therefore, for query answering, the query
needs to go through all the intermediary peers, using the inverse path of the Bloom filters.
With BBFs we can avoid this issue, and still keep the network requirements upper bounded.

30

Each peer can reduce the resolution of the Bloom filters received from its neighbors, such
that they all sum up to the same fixed cost. Since each Bloom filter will correspond to exactly
one peer, the query can be routed directly to this peer.

Cardinality estimation for Bloom filters is also frequentlyrequired for P2P networks.
For example, Bender et al. [13] but also Koloniari et al. [24]merge the Bloom filter sum-
maries of peers with bitwise-AND, to detect the peers with the smaller and larger overlap.
However, these works are based on the restricting assumption that all Bloom filters con-
tain approximately the same number of elements. With our results, it is now possible to
accurately estimate this overlap, even when this assumption is not true.

Streaming.Block-partitioned Bloom filters and Dynamic Block-partitioned Bloom fil-
ters are important for summarizing sets of unknown cardinalities, such as streams. The
stream listeners are frequently unaware of the stream length as well as the number of dis-
tinct elements in the stream, since the stream is often generated dynamically. As such, they
cannot initialize the Bloom filter properly. If they overestimate the stream length, they will
generate a very large Bloom filter which cannot be easily sentover the network or stored.
On the other hand, underestimating the stream length will lead to a very dense Bloom filter,
with an increased false positive probability. Instead, theBBFs enable a dynamic reduction
of the length with a near-optimal false positive probability, whereas the D-BBFs can also
increase the capacity of the filter, whenever this is required.

Cardinality estimation can be applied in stream analysis applications, which frequently
use Bloom filters for summarization. For these applications, estimating the number of dis-
tinct events which occur within a time period can now be performed without any additional
effort. Similar requirements also occur frequently in the caseof network routing, for im-
proving the routing infrastructure [34], and in click stream analysis, e.g., [27].

7 Related work

Following the wide applicability of Bloom filters, literature is rich in extensions of the
Bloom filter structure and its capabilities. The related work can be split in two categories:
(a) extensions which allow Bloom filters to represent more complex information than just
set membership, and, (b) extensions that optimize Bloom filters for specific contexts and
applications.

Representing complex information.In [14], Fan et al. introduce Counting Bloom fil-
ters, which use a small counter at each position instead of just one bit. Counting Bloom
filters server two purposes. First, they can be used to capture frequency statistics instead of
just memberships. Second, they allow deletions of elements(by decrementing the respec-
tive counters). A limitation of Counting Bloom filters is that the counters are of fixed size,
therefore they can be overflown if an element is very frequent. Spectral Bloom filters [20]
address this limitation by using variable-length counters. They use an efficient indexing
technique for the counters, which allows updates in constant time and enables better space
usage compared to Counting Bloom filters. Kumar et al. [35] describe a similar probabilistic
structure, called space-code Bloom filters. Finally, the Bloomier filters proposed by Chazelle
et al. [19] make Bloom filters applicable more widely by enabling any kind of function to
be represented by Bloom filters, not just set membership queries. Bloom histograms, in-
troduced in [36], combine Bloom filters and histograms to build efficient indexes for path
expression queries, e.g., for XPath query processing. Theyhave been extended to multi-level
Bloom histograms in [37]. Another approach to support path expression queries is [38].

31

It is straightforward to apply the principle of Block partitioning to these extended rep-
resentations, to enable dynamic resolution reduction. With respect to cardinality estimation,
an analysis in the line of the one presented here can be performed to cover counting, spectral,
and space-code Bloom filters as well.

Bloom Filter Optimizations.Mitzenmacher in [18] proposed Compressed Bloom Fil-
ters. The approach employs the fact that sparse Bloom filtershave a low entropy, therefore
they can be compressed effectively. Therefore, instead of creating Bloom filters withthe op-
timal density 0.5, the approach proposes creating larger but sparser Bloom filters, and com-
pressing them to reduce their length. The resulting compressed Bloom filter maintains the
same false positive probability as the original Bloom filter. Note however that this technique
does not allow the user to choose the size that the Bloom filterwill have after compression.
Also, the compression cannot be performed on-the-fly on an existing Bloom filter. Instead,
all the elements need to be re-hashed to a larger Bloom filter to enable compression.

Bloom filters are frequently used in networking hardware, e.g., routers or firewalls.
Because computing and memory constraints for these systemsdiffer significantly from
software-level Bloom filters, specific optimizations are required [39–42]. Particularly in-
teresting for our work is the structure of Aggregated Bloom Filters (ABF), proposed in [41].
Similar to Block-partitioned Bloom filters, ABFs split the bit set into several segments, one
for each hash function. While ABFs resemble BBFs with respect to internal structure, their
purpose is completely different. Instead of optimizing memory usage, ABFs are used to in-
crease access performance for hardware implementations via parallelization. In contrast to
BBFs, it is impossible to reduce the size of an ABF because thenumber of blocks is part
of the hardware design, and cannot be reduced dynamically based on the observed Bloom
filter density. The same applies to the work presented in [27].

Incremental Bloom Filters [43] were proposed for allowing the Bloom filters to extend,
for accommodating increasing set cardinalities. Their functionality is very similar to Dy-
namic Bloom filters (cf. Section 4), but Incremental Bloom filters have advantages when the
probability density function for the set cardinality is known. For Dynamic Block-partitioned
Bloom filters, we have used Dynamic Bloom filters as a buildingblock instead of Incremen-
tal Bloom Filters, because Incremental Bloom filters are more complex and do not offer any
advantage in our context. Nevertheless, Dynamic Block-partitioned Bloom filters could as
well be built over Incremental Bloom filters if it would be beneficial for the context.

Set Cardinality Estimation with other Data Structures.With respect to set cardinal-
ity estimation, we have proposed a technique which estimates the cardinality of a set from
its Bloom filter representation. For completeness, we note that there are several other data
structures which address the same problem, e.g., [44,45]. Compared to these works, our ap-
proach focuses on scenarios where a Bloom filter would anywaybe required for membership
testing, or is already available, e.g., where Bloom joins are used. For these applications, our
approach enables estimating the set cardinality with no additional cost. Furthermore, Bloom
filters enable us to address scenarios which cannot be handled by previous works but are
nevertheless valuable for distributed databases, e.g., finding the cardinality of the intersec-
tion of two sets.

8 Conclusions

Bloom filters are of paramount importance for distributed applications. They are used in
many distributed settings, ranging from distributed databases to P2P networks and dis-

32

tributed collaborative systems. Particularly for distributed databases, they enable efficient
distributed joins, and they are used to optimize standard aswell as top-k queries.

In this work, we proposed two novel Bloom filter features which enable additional
considerable optimizations for distributed databases. Our first contribution, the Block-
partitioned Bloom filter, is a Bloom filter encoding which enables dynamic and near-optimal
reduction of the filter’s length and number of hash functionswith practically no cost. As
demonstrated, the reduction of length and number of hash functions enables significant sav-
ing of network resources in distributed query execution, and is directly applicable on existing
distributed algorithms, e.g., Bloom joins. To the best of our knowledge, this is the first pro-
posal of dynamic length reduction in Bloom filters. To enableextending the length of Bloom
filters as well, we introduced Dynamic Block-partitioned Bloom filters. The new structure
allows for both reduction and extension of the length of the Bloom filter, to account for the
cardinality of the represented set and for application-specific requirements.

The second contribution of this work allows for cardinalityestimation of Bloom filters,
with strict probabilistic guarantees. Our analysis supports standard Bloom filters, Block-
partitioned Bloom filters, and also Bloom filters of non-materialized sets, e.g., the union
or intersection of two sets performed directly on their Bloom filter representations. Bloom
filter cardinality estimation is important for effective query planning in distributed databases,
e.g., for estimating the selectivity of equi-joins. In thiswork, we already identified several
algorithms in distributed databases and related areas which immediately benefit from the
Bloom filter cardinality estimation approach, without any additional cost.

For both contributions we provided a comprehensive theoretical analysis as well as a
large-scale experimental evaluation, covering a wide range of application scenarios. Both
theoretical and experimental results confirm the general applicability of our work to many
different applications and settings.

An interesting direction for future research is extending the aforementioned contribu-
tions to derived Bloom filter variants, such as Counting Bloom filters and Spectral Bloom
filters. For the case of BBFs and D-BBFs, their variants usingCounting and Spectral Bloom
filters would enable a compact representation of multisets with dynamic resolution reduc-
tion, useful in many distributed applications. For the caseof cardinality estimation, such
extensions would unfold new application areas, where the number of instances in multisets
is also important, and not only the number of distinct elements.

References

1. B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”ACM Communications,
vol. 13, no. 7, pp. 422–426, 1970.

2. K. Bratbergsengen, “Hashing methods and relational algebra operations.” inProceedings of the Tenth
International Conference on Very Large Data Bases (VLDB), 1984, pp. 323–333.

3. L. F. Mackert and G. M. Lohman, “R* optimizer validation and performance evaluation for distributed
queries.” inProceedings of the Twelfth International Conference on Very Large Data Bases (VLDB),
1986, pp. 149–159.

4. J. K. Mullin, “Optimal semijoins for distributed database systems.”IEEE Transactions of Software En-
gineerings, vol. 16, no. 5, pp. 558–560, 1990.

5. L. Michael, W. Nejdl, O. Papapetrou, and W. Siberski, “Improving distributed join efficiency with ex-
tended bloom filter operations,” inProceedings of 21st International Conference on Advanced Informa-
tion Networking and Applications (AINA), 2007, pp. 187–194.

6. S. Ramesh, O. Papapetrou, and W. Siberski, “Optimizing distributed joins with bloom filters,” inPro-
ceedings of International Conference of Distributed Computing and Internet Technology (ICDCIT),
2008.

33

7. S. Michel, P. Triantafillou, and G. Weikum, “Klee: a framework for distributed top-k query algorithms,”
in Proceedings of the 31st International Conference on Very Large Data Bases (VLDB), 2005, pp. 637–
648.

8. T. Neumann, M. Bender, S. Michel, R. Schenkel, P. Triantafillou, and G. Weikum, “Distributed top-k
aggregation queries at large,”Distributed and Parallel Databases, vol. 26, no. 1, pp. 3–27, 2009.

9. G. Koloniari and E. Pitoura, “Content-based routing of path queries in peer-to-peer systems,” inPro-
ceedings of International Conference on Extending Database Technology (EDBT), 2004, pp. 29–47.

10. A. Kumar, J. J. Xu, and E. W. Zegura, “Efficient and scalable query routing for unstructured peer-to-peer
networks,” inProceedings of the 24rd Annual Joint Conference of the IEEE Computer and Communica-
tions Societies (INFOCOM), 2005.

11. F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen, “PlanetP: Using Gossiping to Build
Content Addressable Peer-to-Peer Information Sharing Communities,” in Twelfth IEEE International
Symposium on High Performance Distributed Computing (HPDC-12), June 2003.

12. P. Reynolds and A. Vahdat, “Efficient peer-to-peer keyword searching,” inMiddleware ’03: Proceed-
ings of the ACM/IFIP /USENIX 2003 International Conference on Middleware. New York, NY, USA:
Springer-Verlag New York, Inc., 2003, pp. 21–40.

13. M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer, “Improving collection selection
with overlap awareness in p2p search engines.” inProceedings of the 28th Annual International ACM
Conference on Research and Development in Information Retrieval (SIGIR), 2005, pp. 67–74.

14. L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder, “Summary cache: a scalable wide-area web cache
sharing protocol,”IEEE/ACM Transactions on Networking, vol. 8, no. 3, pp. 281–293, 2000.

15. J. W. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed content delivery across adaptive
overlay networks,”IEEE/ACM Transactions on Networking, vol. 12, no. 5, pp. 767–780, 2004.

16. N. Anciaux, M. Benzine, L. Bouganim, P. Pucheral, and D. Shasha, “Revelation on demand,”Distributed
and Parallel Databases, vol. 25, no. 1-2, pp. 5–28, 2009.

17. D. Guo, J. Wu, H. Chen, and X. Luo, “Theory and network applications of dynamic bloom filters,” in
Proceedings of the 25th Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), 2006.

18. M. Mitzenmacher, “Compressed bloom filters.”IEEE/ACM Transactions on Networking, vol. 10, no. 5,
pp. 604–612, 2002.

19. B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The bloomier filter: an efficient data structure for
static support lookup tables,” inProceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms (SODA), 2004, pp. 30–39.

20. S. Cohen and Y. Matias, “Spectral bloom filters,” inProceedings of the 2003 ACM SIGMOD Interna-
tional Conference on Management of Data, 2003, pp. 241–252.

21. R. Zhou, K. Hwang, and M. Cai, “Gossiptrust for fast reputation aggregation in peer-to-peer networks,”
IEEE Trans. on Knowl. and Data Eng., vol. 20, no. 9, pp. 1282–1295, 2008.

22. D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The dynamic bloom filters,”Transactions on Knowledge
and Data Engineering (TKDE), vol. 22, no. 1, 2010.

23. J. Yan and P. L. Cho, “Enhancing collaborative spam detection with bloom filters,”Computer Security
Applications Conference, Annual, vol. 0, pp. 414–428, 2006.

24. G. Koloniari, Y. Petrakis, and E. Pitoura, “Content-based overlay networks of xml peers based on multi-
level bloom filters,” inProceedings of VLDB International Workshop on Databases, Information Systems
and Peer-to-Peer Computing. Springer-Verlag, 2003, pp. 232–247.

25. A. Broder and M. Mitzenmacher, “Network applications ofbloom filters: A survey,” inAllerton Confer-
ence, 2002.

26. A. C. Snoeren, “Hash-based ip traceback,” inSIGCOMM, 2001, pp. 3–14.
27. A. Metwally, D. Agrawal, and A. El Abbadi, “Duplicate detection in click streams,” inProceedings of

the 14th International Conference on World Wide Web (WWW’05). New York, NY, USA: ACM, 2005,
pp. 12–21.

28. R. Motwani and P. Raghavan,Randomized Algorithms. Cambridge University Press, 2000.
29. D. Kossmann, “The state of the art in distributed query processing,”ACM Computing Surveys, vol. 32,

no. 4, pp. 422–469, 2000.
30. A. L. Chervenak, E. Deelman, I. T. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C. Kesselman, P. Z. Kunszt,

M. Ripeanu, R. Schwartzkopf, H. Stockinger, K. Stockinger,and B. Tierney, “Giggle: a framework for
constructing scalable replica location services,” inProceedings of the 2002 ACM/IEEE conference on
Supercomputing, 2002, pp. 1–17.

31. S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A measurement study of peer-to-peer file sharing systems,”
in SPIE/ACM Conference on Multimedia Computing and Networking (MMCN), 2002.

34

32. J. Kubiatowicz, D. Bindel, Y. Chen, S. E. Czerwinski, P. R. Eaton, D. Geels, R. Gummadi, S. C. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Y. Zhao, “Oceanstore: An architecture for global-scale
persistent storage,” inProceedings of the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Cambridge, MA, USA, 2000, pp. 190–201.

33. S. C. Rhea and J. Kubiatowicz, “Probabilistic location and routing,” inINFOCOM, 2002.
34. S. Muthukrishnan, “Data streams: Algorithms and applications,” Foundations& Trends in Theoretical

Computer, vol. 1, no. 2, 2005.
35. A. Kumar, J. Xu, J. Wang, O. Spatscheck, and L. Li, “Space-code bloom filter for efficient per-flow

traffic measurement,” inProceedings of the 23rd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), 2004.

36. W. Wang, H. Jiang, H. Lu, and J. X. Yu, “Bloom histogram: Path selectivity estimation for xml data with
updates,” inProceedings of the Thirtieth International Conference on Very Large Data Bases (VLDB),
2004, pp. 240–251.

37. G. Koloniari and E. Pitoura, “Distributed structural relaxation of xpath queries,” inProceedings of the
25th International Conference on Data Engineering (ICDE), 2009, pp. 529–540.

38. S. Abiteboul, I. Manolescu, N. Polyzotis, N. Preda, and C. Sun, “Xml processing in dht networks,” in
Proceedings of the 24th International Conference on Data Engineering (ICDE), 2008, pp. 606–615.

39. H. Song, T. S. Sproull, M. Attig, and J. W. Lockwood, “Snort offloader: A reconfigurable hardware NIDS
filter,” in Proceedings of the International Conference on Field Programmable Logic and Applications
(FPL), 2005, pp. 493–498.

40. O. Erdogan and P. Cao, “Hash-av: fast virus signature scanning by cache-resident filters,”International
Journal of Security and Networks, vol. 2, no. 1/2, pp. 50–59, 2007.

41. N. S. Artan, K. Sinkar, J. Patel, and H. J. Chao, “Aggregated bloom filters for intrusion detection and
prevention hardware,” inProceedings of the Global Communications Conference (GLOBECOM), 2007,
pp. 349–354.

42. E. Safi, A. Moshovos, and A. G. Veneris, “L-CBF: A low-power, fast counting bloom filter architecture,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 6, pp. 628–638, 2008.

43. F. Hao, M. S. Kodialam, and T. V. Lakshman, “Incremental bloom filters,” in Proceedings of the 27th
IEEE International Conference on Computer Communications(INFOCOM), 2008, pp. 1067–1075.

44. P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data base applications,”Journal of
Computer and System Sciences, vol. 31, no. 2, pp. 182–209, 1985.

45. Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan, “Counting distinct elements in
a data stream,” inProceedings of the 6th International Workshop on Randomization and Approximation
Techniques (RANDOM’02), 2002, pp. 1–10.

