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Cardinality estimation and dynamic length adaptation for
Bloom filters

Odysseas Papapetrou Wolf Siberski -
Wolfgang Nejdl

Abstract Bloom filters are extensively used in distributed applimasi, especially in dis-
tributed databases and distributed information systesngduce network requirements and
to increase performance. In this work, we propose two nolebm filter features that are
important for distributed databases and information syste-irst, we present a new ap-
proach to encode a Bloom filter such that its length can betadap the cardinality of the
set it represents, with negligible overhead with respeataimputation and false positive
probability. The proposed encoding allows for significastwork savings in distributed
databases, as it enables the participating nodes to optith&zlength of each Bloom fil-
ter before sending it over the network, for example, whercetieg Bloom joins. Second,
we show how to estimate the number of distinct elements incamlfilter, for situations
where the represented set is not materialized. Theseisitgdtequently arise in distributed
databases, where estimating the cardinality of the reptedesets is necessary for con-
structing an fficient query plan. The estimation is highly accurate and cowmi¢h tight
probabilistic bounds. For both features we provide a thgihoprobabilistic analysis and
extensive experimental evaluation which confirm tifeaiveness of our approaches.

Note: This is a preprint. The final version is availabléhatp: //www. springerlink.
com/

1 Introduction & Motivation

Bloom filters were proposed in [1] as compact approximateeggiesentations. The stan-
dard application of Bloom filters is for representing sets iformat suitable for answering
membership queries, i.e., whether an elemeistmember of a se$. Bloom filters enable
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answering membership queries in constant time, and witmeigroable false positive prob-
ability. They improve upon alternative representationthwéspect to required memory and
construction time. In particular, Bloom filter creation t@&d memory requirements are
linear with set size, with a very low constant.

Since their proposal, Bloom filters have found wide use irritisted databases, for
reducing network costs. For instance, the Bloom join athori[2—4], and several exten-
sions [5, 6] reduce substantially the network cost of disted joins, by representing the
join attributes with Bloom filters. KLEE [7, 8] uses Bloom €l to optimize the network
usage in distributed top-k query execution. Peer-to-pppli@tions use Bloom filters to
represent peer contents, to enable query routing in unsted P2P networks [9-12], and
for estimating item novelty [13]. In addition, Bloom filtease used for optimizing collabo-
ration protocols, such as collaborative caching [14] andext reconciliation [15], as well
as for query optimization in databases with confidentiahdiat enable join execution with-
out revealing information [16]. In general, the compactnesBloom filter representations
and the constant cost for membership tests is appealingadearange of data-intensive
distributed systems.

In line with their significance, Bloom filter characteristibave been analyzed in depth,
and several extensions have been proposed, e.g., [17A28¢ tontext of our work on dis-
tributed databases and peer-to-peer systems we devisetithitmnal features: (a) the abil-
ity to dynamically change the Bloom filter length to make itnmappropriate for particular
requirements, e.g., the number of elements it represamis (la) the ability to estimate the
number of distinct elements hashed in a Bloom filter. Theatifes are important for many
distributed settings. The first feature, dynamically abtegpthe Bloom filter length, is im-
portant for optimizing network usage in distributed datds e.g., in Bloom joins. We im-
plement this feature with an extension on the Bloom filtercttire, calledlock-partitioned
Bloom filters The second feature, deriving a cardinality estimation sétfrom its Bloom
filter representation, is required for counting the digtilements in non-materialized sets,
e.g., streams, or partial joins with the Bloom join algamthWe propose a probabilistic
Cardinality Estimatiorapproach, which estimates the number of elements in a Bldtan fi
based on its density/ffeciently and with high accuracy. A preliminary, limited vemns of
this work was presented in [5]. Source code for both featisragailable onliné.

Block-partitioned Bloom filtersWe first examine how to dynamically reduce the length
of a Bloom filter. Standard Bloom filters are bound to the lendgcided during their ini-
tialization. However, in many cases, it is desirable to cedine Bloom filter length dynam-
ically, that is, after all elements have been inserted. kample, when executing a chain
of Bloom joins in distributed databases [5], the intermgdBloom filters may become too
sparse, wasting network resources. In addition, for sonpticagtions, the optimal Bloom
filter length cannot be computed a priori. For instance, lierdase of Bloom joins, the opti-
mal Bloom filter length depends on parameters determineedoin particular Bloom join at
runtime [6]. Similarly, when Bloom filters are used for suminiag large sets in distributed
systems, e.g., [14, 21], the optimal Bloom filter length faclke communication is deter-
mined from properties of each particular communicatiochsas the network connectivity
between the two endpoints.

Currently, the only way to reduce the Bloom filter length isrelguilding it from scratch,
which is computationally very expensive. When non-malieed sets are involved, e.g., el-
ements of a stream that are not saved locally, rebuildingjlteefrom scratch is even infea-
sible. To address this problem, we propose a novel encodimgnse for Bloom filters. We

1 http://www.13s.de/~papapetrou/ebf/ebf.jar



call it Block-partitioned Bloom filtebecause it partitions the Bloom filters in smaller blocks,
where each subset of blocks can act as an independent BlagemRiéducing the length of
a Block-partitioned Bloom filter incurs practically no cpahd causes only a negligible loss
of accuracy compared to the optimal Bloom filter of the samgtle.

An established extension of Bloom filters is Dynamic Bloortefs [17,22], which en-
ables the filter to increase its length for accomodating netesments. We combine Block-
partitioned Bloom filters with Dynamic Bloom filters, to enalboth increasing and reduc-
ing the length, allowing for a flexible adaptation to the @mts with a near-optimal false
positive probability. The combination is call&namic Block-partitioned Bloom filters
and it is useful for summarizing sets that increase proyeys e.g., [15, 23]. Standard
Bloom filters are infficient for these contexts, as they need to be initializedHerworst-
case scenario, i.e., for a very large cardinality. DynamacB-partitioned Bloom filters en-
able a pay-as-you-go approach, starting from a genericrBliilter length, and increasing
or reducing it progressively.

Cardinality Estimation for Bloom filters.The second contribution allows estimating
the Bloom filter cardinality in the absence of the represisief. At first glance, it looks
as if this problem could be easily solved by attaching theastinality to the Bloom filter.
However, this is not always possible, because Bloom filtexo&en used to represent non-
materialized sets. For example, the Bloom filter of the uifiotersection) of two sets can be
computed #iciently by performing a bitwise disjunction (conjunctioof) their respective
Bloom filters, without actually requiring the materialiiat of the resulting set or any of
the two sets. This case frequently occurs in distributedlzgtes, e.g., Bloom joins [2—4],
where estimating the cardinalities is used to create amaptjuery plan [6]. Furthermore,
in P2P networks, estimating the Bloom filter cardinalityeguired for devising query plans
that increase the information retrieval quality, e.g.,][E3 well as for organizing the over-
lay network such that peers with similar contents becomghfirs [24]. We present an
in-depth analysis of probabilistic cardinality estimati@nd derive tight probabilistic error
bounds. Our analysis also covers Block-partitioned Blodtar§i, and Bloom filters gener-
ated by bitwise conjunction or disjunction of standard Biofiters. Extensive experimental
evaluation shows that the estimations are highly accuests) for extremely dense Bloom
filters.

In the rest of the paper, we describe, discuss, and evalaate antribution in depth
independently, and also show how they are combined. Simcprtiposed contributions are
applicable to a variety of contexts, we deliberately do moistrain the experimental evalua-
tions to a particular application scenario. Instead, weecawroad range of applications and
contexts through extensive experimentation. The papedrustared as follows. In the next
section we present the basics for Bloom filters, and intrechatations. In Section 3 we de-
scribe Block-partitioned Bloom filters, and in Section 4 wéead them to Dynamic Block-
partitioned Bloom filters. The probabilistic cardinalitgtenation approach is presented in
Section 5, for both standard and Block-partitioned Blooterd. Section 6 presents further
usage scenarios and applications for the three proposedsiahs, mostly from the area of
distributed databases and information systems. We claber@lated work and conclusions.

2 We use the expression 'Bloom filter cardinality’ to denote dardinality of the set represented by this
Bloom filter



2 Bloom filter basics

A Bloom filter is a spaceféicient representation of a s8t= {xy, X2, X3, ..., Xa} Of n ele-
ments from a univers@/. It consists of an array ohbits and a family ok independent hash
functionsF = {fy, fo,..., fk}, which hash elements d@¥ to integers in the range of [fn)].
All mbits are set to 0 initiall§. An elementx is inserted into the Bloom filter by setting all
positionsf;(x) of the bit array to 1.

We assume that an elemenis contained in the original set if all positiorfigx) of the
Bloom filter are equal to 1. If at least one of these positianset to 0, then we conclude
that x is not present in the original set. However, Bloom filtersibitta small probability
of false positives; due to hash collisions, it is possiblet @il bits representing a certain
element have been set to 1 by the insertion of other elem€&hésprobability for a false
positive isPrg ~ (1 — e kVm)k,

In some scenarios, the number of elements hashed in a Blo@mi§ilunknown. For
these cases, we can compute the false positive probalaliggcbon the number of true bits
in the filter. A false positive occurs when &lhash values point to true bits. For a Bloom
filter with t bits set to true, the probability that one hash function {®ia a true bit equals
to t/m. The probability that alk hash functions point to true bits, which leads to a false
positive, is {/m)«.

For given set cardinality and Bloom filter length, the falsssitive probability can be
minimized by optimizing the ratio between true bits and Biofiiter length. We denote this
ratio asBloom filter densityThe false positive probability is minimized when this dégns
is 0.5. This is the case when the number of hash functions is settg In(2).

Bloom Filter resolution. Clearly, the false positive probability is influenced by the
length of the Bloom filterm and the number of hash functioks We refer to a Bloom
filter configuration consisting of these two parameters aseisolution, because it conveys
the ability of the filter to represent a set.

2.1 Set Union and Intersection with Bloom Filters

It is often convenient to perform approximate set union amdrgection directly on the
Bloom filters of the sets. For example, in distributed sgiinodes can perform intersection
of their respective Bloom filter representations to idgntferlapping content. We now
present these operations and the accompanied false pgsitibabilities for each operation.

Set union with Bloom filtersWe can construct the Bloom filter corresponding to the
union of two set$S; andS; by merging bitwise their Bloom filterBF; andBF,. In particu-
lar, the merged Bloom filteBF, of setS, = S; U S, equals taBF; v BF,, with v denoting
a bitwise OR merging.

Since the Bloom filteBF, constructed with OR-merging is identical to the traditiona
Bloom filter of S, its false positive probability can be found as explaineevimusly for
standard Bloom filters; if the number of elementsn the union is known, the false positive
probability in BFy, is Pri[BFU] ~ (1 — e /™K wherem andk denote the length of the
filter and the number of hash functions respectively Jfis unknown, for instance, when
the intersection is not materialized, the probability fdalse positive can be inferred from
the number of true bitsin the Bloom filter:Pr[BF] = (t/m)~.

3 We use the expressions ‘A bit is set to fffatse’ and ‘A bit is set to /0" interchangeable.



m Length of Bloom filter S71()  Maximum likelihood value of the
k Number of hash functions number of elements
n Number of elements in the Bloom filter 4 Number of blocks for BBFs and
Pri,  False positive probability D-BBFs
c Expected set cardinality A Number of batches for D-BBFs
t Number of true bits in the Bloom filter Nthres Max. number of elements per batch
é(-) Maximum likelihood value of the num- in D-BBFs

ber of true bits

Table 1 Notations used throughout Sections 3 to 5

Set intersection with Bloom filtersLet BF, denote the Bloom filter 06, N S,. The
Bloom filter representations &; andS; are not sfficient for accurately computinBF..
We can however get an approximation by joinld§; andBF; with a bitwise-AND.

Let BF, := BF1ABF;, with A denoting bitwise AND. TheBF, ~ BF,. AlthoughBF,
is an approximation, it can still be used for membershipstesthe same way as standard
Bloom filters: we conclude that an elemenis not contained ir5; N S, if at least one of
the hash values of points to a false bit iBF,. If all the functions forx map to true bits in
BF,, with high probabilityx belongs td5; N S,.

Similar to the case of standard Bloom filters, a false pasitiecurs when alk hash
values of an element point to true bits BF,. Each hash value points to a true bit with
probability t/m, wheret denotes the number of true bits BF,, andm its length. The
probability that all hash values point to true bitsPg,[BF,] = (t/m)*, wherek denotes
the number of hash functions. Sintés less than or equal to the true bits in any of the
Bloom filters BF; and BF,, the following inequalities also hol®re[BFA] < Pre[BFy],
andPrp[BF,] < Pr[BFy)).

An interesting observation is that the cardinality of theeisection is not easily com-
putable since the actual set intersection is not mateeidliZhe same applies to set union.
In Section 5.2 we show how to estimate this cardinality witfhlprecision, using only the
Bloom filters.

3 Block-Partitioned Bloom Filters for Resolution Reduction

We now consider the problem of adapting the Bloom filter nesoh dynamically. In par-
ticular, we want to reduce the Bloom filter resolution acoagdo application requirements,
after the Bloom filter has been constructed. This is requioedptimizing Bloom filters
when they cannot be recreated from scratch, e.g., for singadata. But even in cases
where recreating a Bloom filter of optimal length would begiblke, we would like to avoid
the computationally expensive rehashing of all elemertigrdfore, we require a technique
which enables us to reduce the resolution of a Bloom filteheuit rehashing the elements,
and even in the absence of the set that the Bloom filter repiese

In the next section we point out why standard Bloom filtersiaagt for this purpose.
In Section 3.2 we describe and analyze Block-partitioneabBl filters, which &iciently
address the problem of resolution reduction. We validadé #fficiency and ffectiveness,
both theoretically, and experimentally in Section 3.3.&ab summarizes the definitions
used throughout the rest of this paper.
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Fig. 1 False positive probabilities with fierent Bloom filter reduction techniques.

3.1 Resolution Reduction for Standard Bloom Filters

Assume that we want to reduce a large sparse Bloom BlEeof lengthmto a smaller one
of lengthm’, denoted withBF’. For this, we need a transformation functioap(-) which
maps the bits from the original filter to the target Bloom filieg.,magx) = (x mod nt).
For testing whether an element belongs to the reduced Bldten BF’, we need to use
the original hash functions, then apptyap and finally check if the respective bits are set
in BF’. The crucial issue here is that, regardless of the choickeofrtapping function, we
cannot reduce the number of hash functions in this processuse for any given bit iBF,
it is impossible to find out which hash function(s) set it toetr

Given the length ratioe = nY/m, the false positive probability foBF’ is Pri, ~ 1-
e kV(M)k The false positive probability before reductionRe, ~ (1 — e VMK, while
the optimal false positive probability for a Bloom filter adrigthm’ which represents the
same set is 0n|Prreduced-optz (1- e—kopzn/(mr))kopz =(1- e—knr/(mr))kr — Prf’ It follows that
Prip < Prreduced-opt< Prf’p for any length ratio O< r < 1. This result is independent of the
chosen transformation function.

Figure 1 shows how the Bloom filter false positive probapilitcreases when a standard
Bloom filter is reduced using mapping, compared to the optieduction. The probability
for the optimal reduction is computed by rebuilding the Bioélter from scratch, using
the optimal number of hash functions for the given numberlefments and Bloom filter
length. The results are for an initial Bloom filter of length9® Kbits, representing 100000
elements. The initial Bloom filter uses 60 hash functionsictvlis the optimal number for
this configuration. For the standard Bloom filter, false pesiprobability already exceeds
0.75 when the Bloom filter length is reduced 8 bf the original length using mapping.
Note that the optimal false positive probability for a Bloditter of the same length is less
than 0.01.

The reason for the large increase in the false positive jpitityas the inability to reduce
the number of hash functions in proportion to the length & Bioom filter. Therefore,
the density of the reduced Bloom filter increases to valugkerithan the optimal density,
which is 0.5 [25]. The false positive probability increagedynomially with the density.
Consequently, the Bloom filter soon becomes unusable forbaeship tests.



3.2 Block-partitioned Bloom Filters
The key for maintaining a near-optimal false positive phalig while reducing the Bloom

filter length is to ensure that its density remains aroundTa%chieve this, we need to adapt
the number of hash functions to the reduced length.

Range of hf;  Range of hf, Range of hf;

Block 1 Block 2 Block 3
1]1]o]o]..[1]o]1]1]o]..Jo]1]o]1]1]. ]2
% > N
5/‘3/ o \\"“’\w
add(e;)

Fig. 2 Adding an element to a Block-partitioned Bloom filter of 3d#s and 1 hash function per block.

To address this requirement, we propose Block-partitidsiedm filters BBFs). BBFs
are composed of many small, independent Bloom filters, eatthits own bit array and
hash functions. We refer to these smaller Bloom filters asKsloln particular, lem be
the desired length of the BBF. We compose the BBF by conctitena blocks, each of
lengthm, = m/u and with its ownky hash functions. Similar to standard Bloom filters,
all hash functions in a BBF are pairwise independent. Foptirpose of adding elements
and checking for elements, each block is treated as a stand-Bloom filter. An element
is added to the BBF by adding it to all blocks (cf. Figure 2).riveership tests are also
performed against all blocks. If the membership test faitsany block, then the element
is not contained in the BBF. A false positive occurs when kltks answer positively for
an element because of hash collisions, even though the etdrad not been hashed in the
BBF.

Assuming pairwise independent hash functions in all blpelesfind the false positive
probability of the BBF by multiplying the corresponding pebilities for each block. If
n elements are already hashed in the BBF, the false positadeapility in each block is
Pripblock = (1 — (1 - %)"@”)"b ~ (1 - eVm)k wherek, denotes the number of hash
functions per block andn, the length of each block. This gives us a total false positive

kym/my
probability Pry, = (1 - (1 -4 )kbn ~ (1 — e kon/moykom/m,

My
Reducing the length of a BBF is straightforward and incuexfically no cost. Consider
a BBF with u blocks, each of lengtim,. We reduce it to a lengthY < u x m, by taking
only the firstm’ /my blocks (rounded to the nearest integer) with their accoryipgrhash
functions. The resulting Bloom filter can also undergo thmegrocess again, if further
resolution reduction is required. This reduction step expensive regarding memory and
computation, since it does not require rehashing of the etésn Therefore BBFs are also
suitable for use in applications with real-time constrgjisuch as stream summarization.
Itis important to note that BBFs can still be combined wittnisse AND, or bitwise OR,
similar to normal Bloom filters. Even more important for netking applications, we can
also combine BBFs of ffierent resolutions as long as these share the same haslofisncti
and block length; in this case, we produce a combined BBFelaWwest of the two resolu-
tions. Particularly concerning the bitwise OR case, mosaaded merging techniques are



also possible, such as keeping the additional informatiom fthe largest BBF separately,
and adapting the membership tests accordingly. Howeveh, merging technigues have the
disadvantages that they do not yield standard BBFs, thayireeeeping track of all the
merging actions, and inevitably add complexity at the menstiip test algorithm.
Configuration of Block-partitioned Bloom Filters We now show how a BBF is ini-
tialized to minimize the false positive probability. Letdenote the maximum length that
the BBF can occupy. The expected number of elements to betastthe BBF is denoted
with n. For configuring the BBF, the optimal length per blatk, number of hash func-
tions per blocks,, and number of blocks need to be chosen. We achieve maximum length
flexibility by settingk, to 1. With respect tae andmy,, we want the configuration that min-
imizes the false positive probability for the BBF, subjextht, x u = m. The configuration
my, = [n/In(2)] andu = m/my is the one that results to an expected density of 50% in
each block (the optimal information theoretic density)] #mus minimizes the false positive
probability. The resulting false positive probability ftve BBF then becomes:

Prip = (1 - (1 - i)n)m/m) ~(1- e_n/m,)m/mb @)
My

In some scenariogy, is preselected from the application requirements, e.ghateach
block can nicely fit to the processor’s LR cache or for enabling the BBF to be reduced to
specific lengths. Then, we find the optimal valueKgas follows. False positive probability
of the BBF is minimized when the false positive probabilioy £ach block is minimized.
Given the expected number of hashed elemantee number of hash functions per block
ko that minimize this probability i&, = max(1, [ (my/n) In(2)]).

3.3 Evaluation

We evaluated the false positive probability of BBFs experitally. In particular, we
compared the false positive probability achieved by BBFRh whe respective probability
achieved when reducing a standard Bloom filter, using modraa@ping function, as ex-
plained in Section 3.1. As an additional baseline, we haee tise false positive probability
exhibited by the optimal Bloom filter of the same length,,iteere exists no other Bloom
filter configuration which achieves a lower false positivelyability for this length. To com-
pute this baseline, we determined the optimal number of hagttions for the given length
and set cardinality, and rebuilt the standard Bloom filtenfrscratch.

Our evaluation setup simulates the scenario of reducindethgth of a Bloom filter
before sending it over the network, as is frequently requinedistributed applications (see
Section 6). We ran the same set of experiments for sets witlinzdities between 50000
and 1 million. We now present the results for a set size of @Q000he outcomes for the
other cardinalities were similar. We generated the set lgcsrg 100000 distinct elements
randomly. Due to hashing, the presented evaluation reatdtindependent of the type of
elements contained in the set, which in our case were rarydeetécted integers. After
constructing the set, we hashed all its elements in a stdf®glaom filter of 8192 Kbits with
60 hash functions, which minimized the false positive philits. For the BBF, we used 64
blocks of 128 Kbits, each with 1 hash function.

Figure 1 shows theffect of length reduction on the false positive probabilitydXs is
log scale). We see that BBFs exhibit near-optimal falsetpegprobability for all reduction
lengths. On the contrary, the standard Bloom filteffems from high false positive proba-
bilities even for relatively small reductions. For instanwhen the standard Bloom filter is



reduced to 1024 Kbits, the false positive probability extse@.75, while the false positive
probability given by the BBF for the same length is less th&Xd OReducing the length fur-
ther to 512 Kbits renders the standard Bloom filter uselesalf@ractical concerns, while
the corresponding optimal and Block-partitioned Bloormefilstill maintain false positive
probabilities less than 0.1, which are still acceptableaaride range of network appli-
cations, e.g., [6, 11, 21, 26]. We also note that, for all ctidm lengths, the false positive
probability dfered by the BBF is nearly equal to the optimal false positiabability: the
difference between the corresponding false positive probabiin the above example is
always less than 0.0001.

False positive probability of standard Bloom filters in@esdrastically with resolution
reduction because their density becomes too high, as & wdsthle fixed number of hash
functions. For example, when the standard Bloom filter isiced to 1024 Kbits, its density
exceeds 0.99, and its false positive probability is 0.7& dptimal false positive probability
for a standard Bloom filter of this length is obtained with &hdunctions and it is only
0.007. Approximately the same false positive probabibtgltained by the BBF which uses
8 blocks, each with one hash function. The density of eacbkbilo the BBF is indepen-
dent of the total number of hash functions, therefore theefpbsitive probability increases
slowly compared to standard Bloom filter resolution redarcti

In summary, Block-partitioned Bloom filters enablffigent and &ective resolution
reduction, and can be applied even in applications withtigad requirements. They exhibit
near-optimal false positive probability for all reductiates, without requiring rehashing of
elements. Moreover, they enable all basic Bloom filter ojp@ma, like membership queries,
and Bloom filter unions and intersections.

4 Dynamic Block-partitioned Bloom Filters

Applications frequently require Bloom filters that can behbeeduced and increased in
length. Consider for instance applications which constBlcom filters of sets of unknown
cardinalities, e.g., non-materialized sets, or strearhes& applications cannot optimize a
priori the Bloom filter configuration for the cardinality die set. If they underestimate the
set cardinality, the false positive probability of the Bhodilter will be too high and will ren-
der the Bloom filter useless. If they overestimate the selicality, they will generate a very
large Bloom filter which cannot be easily sent over the neltvasrstored. These scenarios
require a pay-as-you-go solution, a data structure tharitshthe Bloom filter characteris-
tics and that can be increased ardeduced in length to adjust to the set cardinality, or to
the requirements of the application.

Block-partitioned Bloom filters go a step towards the righ¢ction; they allow reducing
the Bloom filter length and number of hash functions at willtlsat the application-specific
cost function is optimized. However, the structure itseléslnot allow increasing the Bloom
filter length, to compensate for a higher number of eleméras the expected one. We ad-
dress this limitation by combining BBFs with an orthogonppebach, the Dynamic Bloom
filters proposed by Guo et al. in [17,22].

The Dynamic Bloom filters approach proposes starting witingle small Bloom filter,
and continuing to add elements in it until the number of hdstiements reaches a prede-
fined thresholthyes. Then, a new empty Bloom filter is constructed, with the samhh
functions and the same length, and is attached to the datdis&. The nexty,.s elements
are then added to the new Bloom filter. This process is repaatl all set elements are
hashed. Query processing for the Dynamic Bloom filter is@yaus; for finding whether an
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Range of hf; Range of hf, Range of hf;

Batches Block 1 Block 2 Block 3

Batch1 [1{1/1|0].../0|1|1(1|0|...[0|0|1|0]|1|...|]1
Batch2 [0|1/0|1].../1]|0|1(1|0|...[0|0|1|1|0|...|0
Batch3 [0|1/1|0].../0|1|0(1|0|...[1{0|1|0]|0|...|1
Batch4 {0|0/0|0]...;0|0|0(0|0|...[0|0|0|0]|0]|...|0

Fig. 3 A Dynamic Block-partitioned Bloom filter with 4 batches andb®cks per batch. The first three
batches are frozen — no additions are allowed. New elementsdaled to the last batch.

element exists in a Dynamic Bloom filter, the element is hdsirece, and checked against
all Bloom filters of the data structure. If the element doesaxist in any of them, we can
safely conclude that the element is not in the set. If on therdtand one of the filters returns
a positive answer for an element, the element exists in tiggnat set with a computable

probability. For a Dynamic Bloom Filter with elements, the false positive probability is at
K\IN/Nthres]
most equal to + (1 - (1 - e‘k“hfeﬁm) , wherem andk denote the length and number

of hash functions in each Bloom filter respectively.

The false positive probability of Dynamic Bloom Filters gi@almost linearly with the
number of elements. Therefore, when the number of elemantbe approximated, normal
Bloom filters are better suited for representing the set.il&ity, when the set cardinality
can be upper bounded, a BBF can be used, which can be redueedhafwhole set has
been hashed, to achieve the required tral®etween length and false positive probability.
However, when the set cardinality cannot be approximateal,abynamic Bloom Filters
are the only viable option.

We combine BBFs with Dynamic Bloom Filters to get Bloom fitef a fully adjustable
length. We refer to the new structure as Dynamic Block-parted Bloom filters D-BBF
for short). D-BBFs ffer the necessary functionalities for reducing and incregsie Bloom
filter length, to dynamically adapt to the cardinality of #et. The structure works as follows
(for now, assume that the optimal configuration parameterté D-BBF are given). Blocks
are considered in batches, as depicted in Figure 3. For $lofdengthm, and withk, hash
functions, we set the threshold of maximum elements pemhbates We then initialize
the first batch of blocks, which is essentially a Block-gantied Bloom Filter, and we start
hashing the elements. When a batch reaches its maximum rieteeshold, we freeze
all blocks in the current batch, and create a new batch okbléar hashing the rest of the
elements. The process is repeated until all elements alethaQuerying for an element
follows the same logic: all Bloom filter blocks on all batchee independently queried. If
a batch of blocks is found which appears to contain the quleey) the element belongs at
the original set with high probability. If no batch of blockdly satisfies the query, then the
element does not belong in the set represented by the D-BBfeduce a D-BBF, each of
the contained BBFs is reduced to the new length, as expléan8dction 3. Optimally, the
reduction process occurs after all elements are hashea iD4BBF, such that the precise
false positive probability, can be determined or upperrlaied. The reduced D-BBF remains
completely functional, i.e., it can accept more elememswer membership queries, and
undergo further reduction.

We now compute the false positive probability for the D-BBEL n denote the total
number of elements hashed in the D-BBF. Witfes Wwe represent the threshold of maxi-
mum elements per batch. We usto denote the total number of batches, ides, [n/Nires]
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Each batch is essentially a BBF, therefore the false pesgiiobability for a batch can be
found using Eqn. 1Preppach = (1 — (1 — 1/my)X)™/M  wherex denotes the number of
elements in the batch. For full batchesequals tonges by construction, and for the last
batch,x equals ta— (1 — 1) X nies. The cumulative false positive probability for the D-BBF
structure is

A
Prip =1 - | | (1 - Pripsac{batch i
i=1
-
=1- (1 -(1-@a- 1/n«b)kb(n—(/l—l)nthres))mka/n\j) % 1_[ (1 -(1-@- 1/%)kbmh,es)mlqa/n1,)

i=1

<1- (l -(1-@a- 1/mo)|%nth'es)mwrrby ~1- (1 - (l - e’l%nmres/rrb)ml%/nb)i )

=

Although Eqn. 2 is accurate, it isfficult to interpret. For a better insight on how the
false positive probability grows with the number of blocks derive an upper bound as
follows. A false positive event occurs when at least one efithitches in the D-BBF returns
a false positive. Thus, the probability of a false positigeatie probability of at least one
batch to return a false positive, minus the probability déast two batches to return a false
positive, plus the probability of at least three batche®tarn a false positive, and so forth.
The dominant term in this equation is the first term (the pbdlig of at least one batch to
return a false positive), and the true value of the equasasways less than the value of
the first term. Therefore, the following inequality is valirg, < Zle Prip-bacc{batch i] =

mwm’. In the simplified inequality we clearly see that the falssifpe
probability of the D-BBF structure grows at most linearlythwi.

Configuration of Dynamic Block-partitioned Bloom filtersThe configuration has two
objectives. First, it must yield a flexible D-BBF, which cam teduced gectively to address
the particular requirements of the application, decidediatime. Second, it must optimize
the D-BBF structure so that it maintains a low false posigiv@bability, even after the reso-
lution reduction step.

The configuration step allows the application to impose tilewing constraints:

AX (l — e*kbnthres/mo

— The length of each batch of blocks This value will be chosen such that block process-
ing and transmission can be performetogently. For example, each single batch can
be set to 8 Kbytes, so that it can be always cached to the vetry faor L2 processor’s
cache (modernféthe-shelf PC’s have at least 32 Kbytes L1 cache and arountyteM
of L2 cache). Another option is to set it to the Maximum Trarssion Unit (MTU)
value, so that each batch of blocks can be packed to a sinddH @etwork message.

— The false positive probability per bat&hg, pacn When the communication cost can be
formalized as a tradefbbetween the false positive probability and the length oheac
batch,Pri.parch is set to the value that optimizes the trade-Otherwise, it can be the
maximum false positive probability accepted by the user.

We now need to decide on the valuesmf, ky, and nyes. Similarly to the case of
BBFs, we seky to 1 by default, because this value gives the maximum flewidibr the
length reduction step without causing noticeable incrétagke false positive probability.
We then need to choose the valuesrgfandnges that will minimize the overall false posi-
tive probability in the D-BBF. This probability can be miniized by maximizing the number
of elements per batchy,es, thereby reducing the number of batches required to represe
the set. To find the value af, that maximizesy,es We use local search. We first start with
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a single block per batch of length, = m, and compute the maximum number of elements
per batchnnes, such that the false positive probability per batch is attRg.aich Recall
that each batch is a standalone BBF, hence the maximum nwhelements per batch can
be computed ficiently using Egn. 1. We then gradually increase the numbblogks per
batchu, adjusting the length per block to/u. For eachu, we compute the corresponding
value of nyres, keeping track of the which leads to the maximumy,es. Note that we are
only interested in the values pfwhich satisfy the constraint/u € N3, thereby reducing
the solution space t@(log(m)) possible values. The cost of this computation is negkgib
and it happens only during initialization. An additionaltiopization is possible by consid-
ering that the function that describes the relatiomgfs andu is concave. Therefore, hill
climbing optimization is guaranteed to derive the valuengfthat maximizeSyyes. An al-
ternative method for deriving the optimat, is by assuming real values foges and my,
and using derivation to optimize the equation.

4.1 Evaluation

The purpose of the experiments was to examine the suitabfliD-BBFs for representing
sets of unknown cardinalities, such as streams and nordaleted sets. To systematically
evaluate the structure, we initialized D-BBFs for an expddtet cardinality, and used them
to represent sets that were either larger or smaller tharexpected set cardinality. We
compared D-BBFs with standard Bloom filters, with respecketmth and false positive
probability.

We first chose the expected set cardinatity {5000Q 100000200000, and the target
false positive probabilityrs, € {0.1, 0.05,0.01,0.005. For each combination afandPry,,
we initialized a standard Bloom filter, denoted as BF, and addyic Block-partitioned
Bloom filter, denoted as D-BBF. Following, we created aSetith cardinality |S| in the
range of £/5...5c]. Because the process of inserting elements in Bloom filtetsased
on hashing, the experimental results are orthogonal toyte ¢f elements irg, which in
our case was random integers. For example, the resultsgibpta stream summarization,
where these sets would contain the elements of the streaith whuld be of any type.

After initializing S, we added all elements &to both BF and D-BBF. For the D-BBF
structure, after adding all elements, we also reduced $slugon so that it fiered a false
positive probability closer to the chosen probabilg,. The standard Bloom filter did not
allow this resolution reduction since it lacks length flékia Finally, we measured the
resulting false positive probability and the length of thwe structures.

Figures 4 a.-d. plot the false positive probabilities inatiein to the cardinality of
the set, when the two structures are configuredMgg = 0.1,0.05,0.01, 0.005 respec-
tively, assuming an expected set cardinality of 100000.ef@oprovides further details
for selected experimental configurations. The results ifbeiknt expected set cardinalities
(c € {5000Q20000Q) were analogous. The limitation of standard Bloom filterslesarly
visible in these results: they are rendered useless wheactii@l cardinality of the set is
notably higher than the expected set cardinality, e.geethimes as much. Interestingly,
selecting a lower target false positive probabiffsg, does not alleviate the problem of stan-
dard Bloom filters. For example, for 500000 elements, theefalositive probability of the
standard Bloom filter wittPr;, = 0.1 is nearly equal to the corresponding false positive
probability of the standard filter initialized fd?rg, = 0.005 (approximately 0.8). An expla-
nation for this behavior can be derived from the fact thatdptimizing the false positive
probability for an expected set cardinality, the numberadthfunctions is chosen such that
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Optimized forPrg =0.05 Optimized forPrg =0.005
Set D-BBF BF, 610Kbits D-BBF BF, 1078Kbits
cardinality | Length (Kbits) | Prob Prob Length (Kbits) | Prob Prob
25000 305 0.022 ~0 404 0.005 ~0
50000 458 0.021 0.006 674 0.003 ~0
100000 1220 0.050 0.050 2155 0.005 0.005
150000 1220 0.055 0.145 2155 0.005 0.037
200000 1830 0.097 0.272 3232 0.010 0.117
300000 2440 0.142 0.531 4310 0.015 0.380
400000 3050 0.185 0.726 5388 0.020 0.635
500000 3660 0.226 0.847 6466 0.025 0.805

Table 2 False positive probabilities and length for Dynamic Blgaetitioned Bloom filter and standard
Bloom filters. The lowest false positive probability for axperiment is printed in bold.
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Fig. 4 False positive probabilities of D-BBF and standard Bloorefd. All structures are configured for
100000 elements and for initial false positive probahildy0.1, b. 0.05, ¢.0.01, d. 0.005.

the resulting filter has a density of 0.5. This is independéttie chosen false positive prob-
ability. Adding more than the anticipated elements in annoigzed Bloom filter leads to a

rapid increase of the density, causing more hash collisodshigh false positive probabili-

ties.

Regarding D-BBF, we first note that its false positive proligbscales favorably with
the cardinality of the set. Even the D-BBF configured for atieély high initial false pos-
itive probability of 0.1 gives a maximum false positive pabidity of 0.4 for 500000 ele-
ments, whereas the corresponding false positive probahili the standard Bloom filter is
over 0.8. The small fluctuation observed in the false pasjirobability of D-BBF (particu-
larly visible in Figure 4 a.) indicates the addition of a ndadk in D-BBF. We also note that
for large sets, false positive probability grows approxishalinearly with the number of el-
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ements, but with a very small cieient, which is controlled from the initial false positive
probability per batch. This property of D-BBF makes the cinee suitable for representing
sets of unknown cardinality.

As expected, D-BBFs are more accurate when they are ig#idfior a small false posi-
tive probability (compare for instance Figure 4 d. with Figg a.). It is therefore beneficial
to configure the D-BBF for a very low target false positivelgability, and after all elements
are added, to reduce its resolution to the minimum resalutiat satisfies the required false
positive probability.

It is also interesting to see how the length of D-BBFs comparith the length of stan-
dard Bloom filters (Table 2). Standard Bloom filters are canfgl for a fixed set cardinal-
ity, therefore their length remains constant throughoatekperiment. We see that for small
sets, large standard Bloom filters areffi@ent; even though they reduce the false positive
probability well below the targeted one, they require toacchnapace, as they do not allow
resolution reduction. For sets larger than the expecteatirality, standard Bloom filters re-
quire less space than D-BBFs, but they also have very high fadsitive probability. Instead,
D-BBF structure works in a pay-as-you-go approach. It gddsoves batches and blocks,
so that the false positive probability approximates thgeted false positive probability as
much as possible.

Summarizing, D-BBFs have better scalability charactiessthan standard Bloom fil-
ters, and they maintain an acceptable false positive piliyadven for sets significantly
larger than the predicted ones. They also enable resolwidiction, which is important
for distributed applications. These properties make tHBHP- structure a good choice for
summarizing sets of unknown cardinalities for memberségbst

5 Cardinality Estimation for Bloom Filters

We now show how to estimate the cardinality of a set — the nurobeistinct elements
it contains — based solely on its Bloom filter. This functilityais useful when it is too
expensive to maintain or retrieve the full set, and only aoBidilter representation of the
set is available. This frequently occurs in stream procgsiE?], in Bloom joins [2, 3], and
in other distributed systems. We describe several suclicagiphs and show how they can
directly benefit from Bloom filter cardinality estimation 8ection 6.

In Section 5.1 we describe cardinality estimation for staddBloom filters. In Sec-
tion 5.2 we show how the same principles are used to estithateardinality of set unions
and intersections by using only the corresponding Bloorerfilof the sets. We provide the
corresponding analysis for Block-partitioned Bloom figtér Section 5.3. In Section 5.4 we
present an extensive experimental evaluation for all geg@pproaches.

5.1 Cardinality Estimation for standard Bloom Filters

We now show how to estimate the number of distinct elemerghdtiin a standard Bloom
filter and derive probabilistic bounds for the estimatiostiation requires only the number
of true bits in the Bloom filter, and the Bloom filter configueat, i.e., number of hash func-
tions and Bloom filter length. Briefly, the analysis proceaddollows. With Lemma 1 we
estimate the expected number of true bits in a Bloom filtegmthat it containg elements.
This lemma is required for deriving the probabilistic bosn&ollowing, we estimate the
number of elements in a Bloom filter, given the number of trite. Brinally, in Theorem 1
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we derive probabilistic bounds for the number of elementieddo a Bloom filter, given the
number of true bits.

Lemma 1 The expected number of true bits in a Bloom filter of length th lwhash func-

tions after n elements were hashed &n) = m x (1—(1_ ;)k”). Also, the following

m
inequalities hold:

Upper bound: The probability of the number of true bits to lmrerthan(1 + 5) x
S(n) is P@# true bits> (1 + 6) x S(N)In) < [€°/(1 + 6)M*)]5M for § > 0.
Lower bound: The probability of the number of true bits to ésslthan(1 - 6) x

S(n) is P# true bits< (1 - 6) x $(n)In) < e SM*/2 for 5 > 0.

Proof Given a Bloom filter of lengthm with k hash functions and elements hashed into
it. We define the binary random variabl&s, Z,, ... Z, whereZ; is interpreted to be the
indicator variable for the event that tHebit in the Bloom filter is set to true. The probability

that thei'" bit is set to true iS[i = true] = l—(l - %) " Having a Bloom filter of lengtim,

~ ki
the expected number of true bits equalSta) = Y™, P[i = true] = mx (1 -(1-3) n).
The bounds follow directly from the Cherfionequality, by assuming (as is standard in the
analysis of Bloom filters) that the random variablgsZs, . .. Z, are independent. For the

lower bound, we use the simplified form proposed in [28], @-®. O

We now estimate the number of elements hashed in a Bloombdssd on the number
of true bits in the Bloom filtet. We denote by§=1(t) the inverse ofS(n), so thatS-(t)
returns the number of elements that would result on an eegenimber of true bits in the
Bloom filter. We findS-1(t) using the probability of a bit to be true:

t kSL(t) 1 kSL(t) t
P[i:true]:a:l—(l—ﬁ]) ﬁ(l—ﬁ]) :l—aﬁ

®)

S-1(t) is the maximum likelihood value for the number of hashednelets given the
state of the Bloom filter, and can be used as a rough estimag@ atsingle number of
hashed elements is required. However, strict error marginonly be derived for intervals
of set cardinalities. The following theorem provides forieeg interval the probability that
the real cardinality of the set is indeed within the given s

Theorem 1 Given a Bloom filter BF of length m with k hash functions ands bet to true.
Let S71(t) denote the expected number of elements in a Bloom filten ghat the Bloom
filter has t bits set to true. Then, for any n, such that n< S7(t — 1) andS™(t + 1) < ny,

the number of elements hashed in BF lies in the raimgen, ) with a probability of at least

N N +1-8(nr))?
1 1500 x [§(n) (¢t - DI - & 5

Proof If the number of elements i< n;, thenP(# true bits> t|n) < P(# true bits> t|n)).
Choosingn, ands; such that (& 6,) x S(n)) < t, we obtain by Lemma 1 that this probability
is P(# true bits> (1 + &) x S()In) < [€" /(1 + §)X+]3M) Similarly, if the number of
elements if > n;, thenP(# true bits < tjn) < P(# true bits < t|n;). Choosingn, andé;,
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such that (3 6;) x é(n,) > t, we obtain by lemma 1 that this probability P¢# true bits <
(1- ) x S(ne)iny) < e Sm0t2,

For choices ofy, 6, n;, §; as described above, we get that with probability [ /(1 +
8)@+]SM) — e=S(M¥/2 the number of elements is in the range ;). We compute a value
for 6 such that (I+ 6)) x 8(n) < t. Clearly,s, = =30 satisfies the inequality. Similarly,

S(m)
we compute a value faf; such that (& &) x S(n;) > t. Clearly,s, = %

inequality.

We conclude that with probability of at leastd o —elt1-8( M) x[S(n)/(t-1)]D),
the number of elements is in the rangg ). O

satisfies the

Theorem 1 enables computing the cardinality of a set baséd Bfoom filter represen-
tation, and in particular, on the Bloom filter length, numbé&hash functions, and number
of bits set to true. It also allows computing of upper and loeardinality bounds, for set-
tings where probabilistic guarantees are important. Asesyperimental evaluation shows
(Section 5.4), for Bloom filters of reasonable densities, that can be used for membership
tests, estimations computed with Theorem 1 are highly atewand probabilistic bounds
are tight.

5.2 Cardinality Estimation for Bloom Filter Union and Irgection

Distributed algorithms frequently need to estimate thelicality of a union or intersection
of remote sets, having only the Bloom filters correspondiniip¢ sets. For example, a query
planner for a distributed database may need to estimateatdéaelity of an equi-join or of
a union of two remote tables, to devise the optimal query @@t plan. Similarly, peers
in a P2P network may need to coordinate for executing a gbgrgxchanging their Bloom
filters. We describe these and other scenarios in detaildtides.

With respect to cardinality of the union, we note that a fifferduced by bitwise-OR
merging of the Bloom filter8F;, BF,, ..., BF, (the Bloom filters of setS§;, S,,...,Sy) is
identical to the Bloom filter of the s&, := S; U S, U... U S,. Therefore, we estimate the
cardinality of the se§, by applying Theorem 1 on the bitwise-OR produced Bloom filter

Estimating the cardinality of the intersection of two or maets from their Bloom
filters is slightly more complicated, because merging wittvise-AND does not result to a
standard Bloom filter on which Theorem 1 can be applied. Iti@dar, the same bits may
have been set in the two individual Bloom filtdB&,; andBF, from two different elements,
the one belonging only to the first set and the other belongirig to the second set. These
bits will be incorrectly set to true in the AND-merged Bloorttdi, i.e., the Bloom filter
produced by mergin@®F; and BF; with bitwise-AND. Therefore, the resulting density of
the AND-merged Bloom filter will not be representative of tadinality of the intersection
of the two sets.

The probability for such a bit collision can be high, esplgis dense Bloom filters.
Consider for instance two se8 andS,, created by randomly selecting elements from a
very large universe of elements. LBE,; andBF; be the Bloom filters of the two sets, both
with lengthm andk hash functionsBF, represents the Bloom filter produced by bitwise-
AND merging of BF; andBF,. Then, the probability for each bit to be setBifr; andBF,
from two different elements, thus also falsely beBifi, is: (1— (1— 2)km) x (1- (1- 1)km).
For dense Bloom filters, this probability is high and can Bigantly influence the density of
BF,, and thus falsify our previous cardinality estimation ftioc. However, we can use the
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density of the initial Bloom filters for estimating the numlug these random bit collisions
(we refer to the number of these collisionsrag). Then, we can subtract;s from the
number of true bits iBF,, and use this number for the estimation of the cardinality of
S1NSo.

For the analysis we use the following notatioBg:, denotes the intersection of s&s
andS,. The Bloom filters of the sets are denoted wik;, BF, and BF,. With BF, we
refer to the Bloom filter produced by mergiff; and BF, with bitwise-AND. Finally,tx
refers to the number of true bits in Bloom filtBF,, e.g.,t, denotes the count of true bits in
BF,.

Lemma 2 Let BF, BF,, and BF,, denote the Bloom filters of;SS,; and S; N S, respec-
tively. All filters have length m and use the same k hash fumtiBF, denotes the Bloom
filter created by bitwise AND of BFand BF,. The expected number of bits that are set in

BF, but are not set in BFis fpits = %ﬁz‘“)

Proof For the proof we represent Bloom filters as a set of numbetbasd f (BF[i] = true)
theni € S ETggyjp. By definition ofrpjs:

IS ETgr, | = IS ETgr, | + Ibits

where|S ETy| denotes the cardinality & ET,. Assuming that the hash functions in each
Bloom filter are independent (a standard assumption for mBlditters), the elements in
S ETgr, \S ETgE, are independent from the elementSi& Tzr, \S ETgr,. Thus the probabil-

ity of a number to occur in botB ETgg, \S ETgg, andS ETgg, \S ETgr, is ISE ey |15 ey |

I'TF|S ETB;:(.‘|
IS ETer, |-IS ETer, |
m—lS.ETBF.m | . . .
This gives a maximum likelihood value fog;s:
P ISETer, I-ISETer, | _, ISETer, |-ISETgr, |
loits = (m - |S ETBFm |) X m-IS ETar, | m-ISETer, | (4)

— (-th)x(t—tn)
mt,

O

Similar to the analysis for standard Bloom filters, we defirferection for estimating the
number of true bits in the Bloom filteBF,, assuming that the number of elements in the
intersectionS; N S,| is known.

Lemma 3 Let B, and BF, be the Bloom filters of sets;Sand S, respectively. The
Bloom filters have length m and share the same k hash functi®Rs is the Bloom
filter created by a bitwise AND of BFand BF,. Then, the functiorS(t;,tz, n,) =

xtormx (- (L 1mf M )x(m--) ragyrns the expected number of bits that are set in, Bifhere

mx(1-1/m)k<mn

N~ denotes the cardinality of SN S,, and  denotes the count of the true bits set in the
Bloom filter BF. Also the following inequalities hold:

Upper bound: The probability that the number of true bits iR ,Bs more than
(1+6) x S(tr, tp, Nn) is P# true bits> (1+6) x S(ty, to, n)IN) < [€/(1 + 5)1+0) ]St tem)
fors > 0.

Lower bound: The probability that the number of true bits iR Bis less than
(1-6) x S(ty, to, Nn) is PE# true bits< (1—6) x S(ty, tp, Nn)) < e Sttm)xe?/2 for 5 > 0,
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Proof

th =th + Ipits
-t -

=tn+(1 n) X (2 — 1)

m—tn
X+t x (M-t - 1))
B m-—t,

ty Xty +mx (11— (1- 1/m*™) x (m-t; - )

- m—mx (1 (1-1/m)")

_tlxt2+mx(l—(l—l/m)k”“)x(m—tl—tz) (5)

mx (1 - 1/m)k™

The bounds follow directly from Cherfitinequalities, as in Lemma 2.0

Next, we estimate the number of elements in the interse&jon S, from the Bloom
filters BF;, BF, and BF,. We denote by§~1(ty, t,,t,) the inverse of5(ty, tp, n,), So that
giventy, t, andt,, functionS=1(ty, t,, t,) returns the expected cardinality 8f N S,. Similar
to the analysis for the single Bloom filter, we can fiid(ty, t,, t,) using the probability of
a bit to be true iBF,:

th

m
i Xto + mx (1 - (l - 1/m kXS_l(ll’tz’lA)) X (m -t - tz)

= =

n?—n?x(1-u-1ﬁmw§mmyg

In(m— LXuxe) — n (m)

m=ty—to+ts

kxIn(1-1/m)

P(i = true) =

Sty to, 1)) = (6)

S1(ty, 1, t,) is the most likely number of elements 8 N S,. Similar to the normal
Bloom filter cardinality estimation (Theorem 1), we can spper and lower bounds for
the estimation of51(ty, t,,t,). The following theorem provides for a given interval the
probability that the real cardinality &; N S, is indeed within the given bounds.

Theorem 2 Let BF, and BF, be the Bloom filters of Sresp. $, with length m and k hash
functions. BF; refers to the Bloom filter produced by bitwise AND ofBind BF,, and
with tx we denote the count of the true bits set in the Bloom filteg. BBr any n, n, such
thatn < é‘l(tl, t2,t\) < ny, the number of elements in the intersectionsS; lies in the
range(n;, n;) with probability of at least
1- (M)t ' -1-8t ) _ g izt
th —

Proof Via Cherndt bounds, similar to the proof for Theorem 1.

Theorem 2 does not directly hold for Bloom filters created sy intersection of more
than two Bloom filters. It is not possible to derive closedifoequations for the Theo-
rem which address an arbitrary number of Bloom filters, amdetfore we do not present
this analysis here. Nevertheless, the corresponding iegsatan be extended for individual
cases, following the example for the 2 Bloom filters.
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5.3 Cardinality Estimation for Block-partitioned Bloomtéits

The proposed cardinality estimation approach presenteétkation 5.1 can also be used
for Block-partitioned Bloom filters, i.e., by consideringe of the blocks to estimate the
cardinality of the BBF. However, we can get more accuratdinatity estimation and stricter
bounds if we account for all blocks in the Block-partitioned filter. Since the analysiséry
similar to the analysis presented at Section 5.1, we onlygmiesketches of the proofs.

First we find the expected number of true bits in BBF aftetements are hashed in the
Bloom filter.

Lemma 4 The expected number of true bits in a Bloom filter wiithlocks, each of length
my, and with lg hash functions after n elements were hashe8(s) = Am, (1 -(1- %)"b”).
Also, the following inequalities hold:

Upper bound: The probability of the number of true bits to lmrerthan(1 + 5) x
S(n) is P@# true bits> (1 + 6) x S(N)In) < [€°/(1 + 6)X*D]5M for § > 0.
Lower bound: The probability of the number of true bits to égslthan(1l — 6) x

S(n) is P(# true bits< (1 - 6) x $(n)In) < e=SM*/2 for 5 > 0.

Sketch Each block in a BBF is an independent Bloom filter. Thereftre expected number
gf true bits in a block which contains elements can be found with Lemma 2, and it is
Shiock(N) = My(L — (1 - 7£)*"). Since the Block-partitioned Bloom filter hasblocks, the

expected number of true bits in all blocks3§n) = A x Spieadn) = Amy (1 - (1 - 2 )kn).
Bounds follow directly from Cherrfdbounds. O

The following theorem provides for a given interval the mbliity that the cardinality
of the BBF is within this interval.

Theorem 3 Given a Block-partitioned Bloom filter BBF with blocks, and t bits set to

true. Each of the blocks has length, and k hash functions. Then, the expected number of

distinct elements hashed in BBF$s(t) = %. Furthermore, for any pn, such

thatn < $-1(t—1)andS-1(t+1) < n, the number of elements hashed in the Bloom filter lies
S(nr)?

in the range(n;, ;) with a probability of at least—et-1-SMW) x[§(n))/(t-1)]¢- Ve~ R

Sketch Let $1(t) denote the number of elements that would result on an esgectmber
of t true bits in BBF. The probability of a random lbifrom BBF to be set to true is

P[i = trug] = t/(Amy) = 1 — (1 — 1/my)*S™0 =

. log(1- 7
gy am,
S 0= og@—1/my

Bounds follow directly from Cherrfdbounds, as in Theorem 1.0

5.4 Evaluation

While our analysis alreadyfiers probabilistic bounds for cardinality estimation, weoal

evaluated experimentally the influence of Bloom filter léngtumber of hash functions,
and number of blocks, on estimation accuracy. The expetsneovered all three cases,
standard Bloom filters, Bloom filter intersection, and Blgutitioned Bloom filters.
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Fig. 5 Estimation accuracy for standard Bloom filters: a. 8192, thash functions, b. 32 Kbits, 2 hash
functions.

All experiments shared the same experimental setup, whepresent here. Then, in
the following sections we present and discuss the resulthéothree structures separately.
Based on the experimental results, we also point out somaigabconsiderations with
respect to the optimal choice of Bloom filter configurationdardinality estimation.

For each individual experiment, we first generated &s#tcardinalityc, and created its
(Block-partitioned) Bloom filter representation. Using fiiter representation, we estimated
the cardinality ofS according to the theorems presented earlier in this se@mhevaluated
the accuracy of the estimation. For the case of AND-mergedlfilters, we generated an
additional setS’, having a pre-configured overlap wif i.e.,|S N S’| = ovl. We then
estimated the cardinality ¢& N S’| using the AND-merged Bloom filters of the two sets,
and evaluated the accuracy of the estimation.

To assess the influence offdirent factors, we varied the Bloom filter length, the cardi-
nality ¢, and the number of hash functions. For the case of Blocktipeued Bloom filters,
we also varied the number of Blocks, whereas for the AND-memloom filters we var-
ied the size of the overlap. For each setting, we repeatedxjperiment multiple times to
even out randomfects. We report average, maximum, and standard deviatithe afctual
relative error after 1000 repetitions, and analytical ltsufor the probabilities 0.7 and 0.9.

In the next section we describe and discuss our findings @rdstrd Bloom filters.
Results corresponding to AND-merged Bloom filters are prieskin Section 5.4.2. Sec-
tion 5.4.3 discusses the evaluation results for Blockipamed Bloom filters.

5.4.1 Cardinality Estimation for Bloom Filters

We evaluated cardinality estimation for standard Bloonerf#itvarying the Bloom filter
length between 8192 bits and 8192 Kbits, and the number &f tusstions between 1 and
10. For each experimental configuration, we have set thermani cardinality ofS to the
one that resulted to a Bloom filter of density 0.9. Cardigatistimation and the respective
probabilistic bounds were computed using Theorem 1.

Influence of set cardinalityFigure 5 plots the relation between the actual and estimated
cardinality. Each experiment repetition is marked as afdotclarity, only the first 10 rep-
etitions are included in the figure. We also include the pbdlstic bounds for each setting
for comparison purposes. The results are for Bloom filtergiath 8 Kbits and 32 Kbits,
each with 2 hash functions. To show how Bloom filter densitgas estimation accuracy,
we have also marked the points where the density of the Bldtenréaches 50%, 70%, and
80%. Table 3 presents further details for some selectedguoations, after 1000 repetitions.
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Fig. 6 Estimation accuracy for standard Bloom filters: a. Influent®loom filter length, b. Influence of
number of hash functions.

We see that estimations are always very close to the actoanBfilter cardinalities.
This is observed for all Bloom filter lengths. In fact, maximwbserved relative error was
only 0.04, and it occurred for the Bloom filter of 8 Kbits, wheensity was already 0.9 (cf.
Table 3). Note that the corresponding Bloom filter with thésisity was already useless for
membership tests, as it exhibited a false positive prothalaf 0.81. We also see that the
probabilistic bounds are very tight for moderate densiiies, densities up to 0.7. Standard
deviation of the relative error is also small, and the maxmrror is close to the average
error. The same outcome is observed over the whole rangstefitBloom filter lengths and
densities.

We also see that our analysi$ers an appropriate anéhieient approach for counting the
distinct elements in huge sets. For example, a Bloom filtd086 Kbits (0.5 Mbyte) with 2
hash functions is already ficient for accurately estimating the cardinalities of setgig
as much as 5 million distinct elements (Figure 6 a.). Héiciently counting 10 million
distinct elements, a Bloom filter of 1 Mbyte with 2 hash fuoos is sifficient (Table 3).

Influence of Bloom filter length.Figure 6 a. plots the average relative error with respect
to the number of elements for Bloom filters of various leng#iswith 2 hash functions.
We see that for the same number of elements, a larger Bloen fiklds higher estima-
tion accuracy, as expected. Furthermore, probabilistimte are tighter, and the standard
deviation of relative error is lower for larger Bloom filters

Table 3 also shows that larger Bloom filters exhibit higheuaacy for the same density.
For example, for a density of 0.534, the average relativer dar a filter of 256 Kbits is
0.0013, compared to 0.0009 for the filter of 512 Kbits with Hzene density. The same
effect is observed with respect to maximum relative error aaddztrd deviation. Moreover,
probabilistic bounds are tighter in the larger Bloom filtéfee practical significance of this
result is that applications for which tight probabilistiounds are important, should create
larger Bloom filters so that they maintain low density. Caumthe elements of a stream is
one such application for which tight probabilistic boundsybe desired. On the other hand,
when a rough cardinality estimation isfBaient, e.g., when cardinality is used to optimize
Bloom joins, a smaller Bloom filter can also be used.

Influence of number of hash functionsFigure 6 b. shows the relative errors for Bloom
filters of length 2048 Kbits, for dierent numbers of hash functions. As expected, the num-
ber of hash functions alsdfacts estimation accuracy. Thifext is indirect, via density: by
increasing the number of hash functions, the resultingitleimcreases, causing a higher
relative error. Therefore, Bloom filters with less hash fimts can accommodate more el-
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Length | Hashes| ltems | Density Relative error Probabilistic bounds
(Kbits) Avg. | Max. | Std.dev.
Only number of elements varies
8 2 3000 0.519 | 7.2E-3 0.032 | 5.77E-3 | 70%:2837-3161
90%:2793-3204
8 2 9000 0.889 | 9.44E-3| 0.040 | 7.23E-3| 70%:8103-9887

90%:7879-10111

Bloom filter length varies

256 2 100000[ 0.534 | 1.34E-3| 5.37E-3| 1.02E-3 | 70%:99044—-100955
90%:98764-101235

256 2 200000| 0.783 | 1.44E-3 | 6.38E-3| 1.06E-3 | 70%:197523-202475
90%:196808—-203190

512 2 200000| 0.534 | 8.76E-4 | 3.35E-3| 6.66E-4 | 70%:198647-201350
90%:198250-201747

8192 2 1E7 0.908 | 1.13E-3| 2.2E-3 | 4.04E-4 | 70%:9964361-10035632

90%:9953888-10046105

Number of hash functions varies
2048 1 500000{ 0.212 | 3.65E-4 | 1.64E-3| 2.8E-4 | 70%:497123-502875
90%:496386-503611
2048 10 500000{ 0.908 | 6.46E-4 | 2.96E-3| 4.91E-4 | 70%:496439-503559
90%:495404-504594

Table 3 Estimation accuracy for standard Bloom filters.

ements, and canfier a more accurate cardinality estimation. Therefore, wnapect to
cardinality estimation, using a single hash function islibst choice.

As explained in Section 2, the optimal number of hash fumstifor membership test
is the one which achieves a density closest to 0.5. This seeimgply a trade-& between
optimizing a Bloom filter for membership tests and for caatiiy estimation. However, as
long as the density of the Bloom filter stays on a lexeteptable for membership testse
effect of the number of hash functions in cardinality estinratiocuracy is negligible. Thus,
applications that use the Bloom filters for both membersbgistand cardinality estimation
should select the number of hash functions such that falsiiyaprobability for member-
ship test is minimized. Applications that use Bloom filteotety for cardinality estimation
should use only one hash function, which is the optimal numbith respect to cardinality
estimation.

In summary, experimental results confirm the suitabilityTbeorem 1 for estimating
Bloom filter cardinality. They show that cardinality estitiaa is highly accurate, even for
very dense Bloom filters and that probabilistic bounds agkttior moderate Bloom filter
densities.

5.4.2 Cardinality Estimation for Bloom Filter Interseatio

For evaluating experimentally the estimation accuracy leédrem 2 we have constructed
sets with various cardinalities and intersection ratiag, @sed their Bloom filters to estimate
the cardinality of their intersection. Similar to the praw$ experiments, the evaluation was
repeated for multiple Bloom filter configurations, with Bfodilter lengths in the range of
8192 bits to 8192 Kbits, and with 1 to 10 hash functions.

Unless otherwise noted, the following results corresporttié configuration where the
the two setsS andS’ have the same cardinaltey and an intersection af/2 elements. For
each Bloom filter configuration, the maximum cardinality lné sets was set to the one that
results to a filter with density 0.9.
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Fig. 8 Estimation accuracy for Bloom filter Intersection: a. Vayithe cardinalities of both sets, b. Varying
the number of hash functions, c. Varying the overlap ratid/adying the cardinality of only one set.

Influence of the set cardinalitiesFigure 7 plots the estimated intersection cardinality
in correlation to the actual intersection cardinality, ®loom filters of 16 and 64 Kbits
with 2 hash functions. Similar to the figures for standarddBidfilters, this figure is also
annotated with probabilistic bounds and density marksalnld4 we present detailed results
for sample configurations.

The experimental results for Bloom filter intersection amgilsr to the results for stan-
dard Bloom filters. Cardinality estimation is highly acderéor Bloom filters of reasonable
densities, i.e., which could also be used for the purposeeshbership tests. Also, the ob-
served maximum relative error and the standard deviatierveiry small, and probabilistic
bounds are tight. Therefore, an application which uses Ahd&dged Bloom filters for mem-
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Length | Hashes| [SNS’| | Density Relative error Probabilistic bounds
(Kbits) Avg. | Max. | Std.dev.
Only number of elements varies
8 2 2000 0.478 0.016 0.060 0.012 | 70%:1736-2262
90%:1670-2329
8 2 5000 0.852 0.034 0.177 0.026 | 70%:2606-7379

90%:2162-7823

Bloom filter length varies

256 2 50000 | 0.386 | 2.6E-3 0.012 | 1.95E-3| 70%:49022-50974
90%:48774-51223

256 2 100000( 0.667 | 3.64E-3| 0.014 | 2.67E-3| 70%:96024—-103967
90%:95020-104970

512 2 100000 0.386 | 1.86E-3 | 8.39E-3 | 1.41E-4 | 70%:98620-101376
90%:98267-101730

8192 2 5E6 0.844 | 1.02E-3 | 4.05E-3| 7.6E-4 | 70%:4908341-5091644

90%:4885133-5114852

Number of hash functions varies
2048 1 250000| 0.124 | 7.07E-4 | 2.94E-3 | 5.39E-4 | 70%:248576—251423
90%:248211-251788
2048 10 250000| 0.844 | 1.91E-3| 8.57E-3| 1.5E-3 | 70%:240923-259072
90%:238656-261338

Table 4 Estimation accuracy for Bloom filter intersection.

bership testing already achieves high cardinality estomaiccuracy. Nevertheless, average
relative errors are still low even even for extremely densibAmerged Bloom filters which
would otherwise be considered useless for membershipdesti

Influence of Bloom filter length.In Figure 8 a. we plot the average relative error for
Bloom filters of various lengths, all with 2 hash functionsr Fhe same set of elements, the
estimation clearly becomes more accurate by increasinglttwm filter length. Similarly,
for a fixed density, relative error reduces when Bloom fileargth increases (as an example
compare the results for 256 Kbits and 512 Kbits filters in €ad)l. Bloom filter length also
affects standard deviation and tightness of probabilisticndeuby increasing the length,
probabilistic bounds get tighter and standard deviatioretzftive error is reduced. There-
fore, an application developer can choose arbitrarilyttigbbabilistic bounds by increasing
the length of the Bloom filters.

Influence of number of hash functionsFigure 8 b. presents the average relative error
for AND-merged Bloom filters of 2048 Kbits, with fierent numbers of hash functions.
We see that estimation accuracy improves when the numbeashf functions is reduced,
for the same reason as with the standard Bloom filter. Nesterdls, the dierence between
relative errors is negligible when density of the AND-metditer is in levels acceptable
for membership testing. Thereby, Bloom filters which ardrofed for membership tests
already dfer significantly accurate cardinality estimation, veryseld@o the optimal one.

Influence of intersection characteristicdn the previous experiments, the two s&ts
andS’ were always constructed with the same cardinalignd with an overlap of/2. To
evaluate the generic applicability of Theorem 2, we alsalooted experiments with sets of
different overlap ratios, and offéérent cardinalities.

Figures 8 c. and d. plot the average relative error corredipgnto the cardinality of
the intersection, for the two filerent cases. For Figure 8 c. the two sets were generated
with the same cardinalitg, and with an intersection cardinality in the range of .[(C].
The cardinality of the two sets was set to the one leading tmlfilters of density 0.5.
For Figure 8 d.S was generated with a fixed cardinalitywhereasS’ was generated with
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a cardinalityc’ in the range of [0..c], and with an intersection af /2 elements witls.
Table 5 presents detailed results for sample configuratfooasing on the Bloom filter of
2048 Kbits, with 2 hash functions.

We observe that for both experimental setups, relativer ésn@duced with an increase
in the intersection cardinality. This observation is cetesit for all Bloom filter lengths. This
is an interesting result, since at first sight it appears todogradicting to the results reported
earlier (e.g., Figures 8 a. and b.), where the relative aésrarcreased with the cardinality
of the intersection. An indication for why this happens iside from Figure 9 a., which
shows the relative error correspondingrigs : tb(BF,), i.e., the ratio ofrys to true bits
in the AND-merged Bloom filter. The figure includes the resdtir the three experimental
setups described earlier, denoted as follows:

— [E1:] Varying the cardinalities of both sets, wil§] = |S’| = ¢, and|S N S| = ¢/2
(Figure 8 a.).

— [E2:] Keeping the cardinalities of both sets fixed and equal, amging the overlap
|S N S’|inthe range [0..c/2] (Figure 8 c.).

— [E3:] Keeping the cardinality o$ fixed and varying the cardinality &'. The overlap
is setto|S’|/2 (Figure 8 d.).

We see that the ratio,is : tb(BF,) determines the relative error. For E1, increasing
the intersection cardinality leads to an increase of this rhecause the,;s increase more
rapidly than the true bits in the Bloom filter intersectiof €ig. 9 b.). On the other hand,
for experiments E2 and E3, increasing the intersectionimrality results to a decrease in
this ratio. In particular, for E2, thg,i;s constantly decrease with an increase of the overlap,
thereby decreasing the ratiogf;s : tb(BF,). For E3,ryits and true bits increase in parallel,
but the true bits increase in a faster rate, which resultsde@easing ratio. The relative
error decreases with this ratio.

Summarizing the experimental results, Theorem 2 estinwatasigh accuracy the car-
dinality of the intersection of the two sets using their Btofilter representations. Tightness
of the probabilistic bounds depends on the density of the Blemm filters, but even for
high densities, the probabilistic bounds aréisiently tight for practical concerns.

5.4.3 Cardinality estimation for Block-partitioned Blodfiiters

For the evaluation of cardinality estimation for Block-figoned Bloom filters, we varied
the number of blocks between 1 and 10, and the block lengiheaest 4 and 4096 Kbits.
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|S| S| ISNY| I'pits:-true Relative error Probabilistic bounds
bits in BF, Avg. | Max. | Std.dev.

Overlap ratio varies

800000 | 800000 | 50000 0.842 0.012 0.054 | 9.26E-3 | 70%:46635-53363
90%:45772-54225

800000 | 800000 | 100000 0.703 5.70E-3| 0.023 | 4.51E-3| 70%:96731-103266
90%:95892-104104

800000 | 800000 | 200000 0.474 2.57E-3| 0.011 | 1.93E-3| 70%:196915-203083
90%:196123-203874

800000 | 800000 | 400000 0.177 8.85E-4 | 4.52E-3| 6.73E-4 | 70%:397245-402753
90%:396539-403458

Cardinality of ofS” varies

800000 | 100000 | 50000 0.327 2.72E-3| 0.010 2E-3 70%:49160-50839
90%:48945-51054

800000 | 200000 | 100000 0.306 1.86E-3 | 8.66E-3 | 1.42E-3 | 70%:98789-101209
90%:98480-101519

800000 | 400000 [ 200000 0.264 1.34E-3 | 5.13E-3 | 1.02E-3 | 70%:198217-201782
90%:197760-202239

800000 | 800000 | 400000 0.177 8.85E-4 | 4.52E-3| 6.73E-4 | 70%:397245-402753
90%:396539-403458

Table 5 Estimation accuracy for Bloom filter intersection - Influeraf intersection characteristics.
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Fig. 10 Estimation accuracy for Block-partitioned Bloom filters:4896 bits per block, and, b. 16384 bits
per block, with 2 blocks and 1 hash function per block.

All blocks were initialized with a single hash function, agpkined in Section 3. For each
BBF configuration, we have set the maximum cardinalitysdb the one that resulted to a
BBF of density 0.9. To enable comparison of the results vhighresults for standard Bloom
Filters, in the following experiments we have configuredBiBd-s such that their cumulative
memory requirements corresponds to the memory requiranaétite Bloom filters used in

Section 5.4.1.

Influence of set cardinality.Figure 10 shows the relation between the estimated and

actual set cardinality for two sample BBF configurationsthwilocks of 4 Kbits and 16
Kbits. Table 6 presents further results for selected cordigpns.

We observe that cardinality estimation accuracy and tigggof probabilistic bounds are
comparable to the corresponding accuracy and bounds fodastd Bloom filters. In prac-
tice, the diference in estimation accuracy is negligible, i.e., bregkire Bloom filters into
blocks does not negativelyffact cardinality estimation accuracy. Recall from Sectidh 4
that this is also the case with respect to false positivegiitby for membership tests.
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Fig. 11 Estimation accuracy for Block-partitioned Bloom filtersimfluence o Block length, b. Influence of
number of Blocks.

We also note that, similar to the case of standard Bloom{il@rcuracy of cardinality
estimation depends on the density of the BBF. For sparse B&fisated and actual cardi-
nalities difer only slightly; this diference increases for denser BBFs. Nevertheless, even for
extremely dense BBFs, estimated cardinality still remaéry close to the actual value. As
expected, density alsdfacts probabilistic bounds and standard deviation of redatiror:
for lower densities, probabilistic bounds are significatityhter and standard deviation of
relative error is also smaller.

Influence of block lengthlt is also interesting to see how block lengtlests cardinal-
ity estimation accuracy. Figure 11 a. plots relative erooBlock-partitioned Bloom filters,
constructed with various block lengths. The presentedteeate for BBFs with 2 blocks.
We observe that increasing the block length for BBFs has dasieffect to increasing the
filter length for standard Bloom filters (cf. Figure 6 a.). larficular, for a fixed set, cardi-
nality estimations are more accurate at the BBFs with labofmrks. Furthermore, from the
detailed results in Table 6 we can see that increasing thekBémgth has also a positive
effect on probabilistic bounds and on standard deviation.

Finally, for a fixed density, relative error reduces whendBl¢éength increases (cf. Ta-
ble 6). For example, for a density of 0.534, the BBF with twadbls of 128 Kbits has average
relative error 1.21E-3, while the BBF with blocks of 256 Kbitas double the capacity for
the same density, and a relative error of only 8.89E-4.

Influence of number of blocksFigure 11 b. shows average relative error in relation to
set cardinality for BBFs of dierent numbers of blocks. All presented results are for BBF
structures with cumulative length of 2048 Kbits, i.e., theck length is selected such that
the total structure length is 2048 Kbits. As expected, iasireg the number of blocks has the
same €fect as increasing the number of hash functions in standardnBfilters. Relative
error increases with the number of blocks because lengtadf block is reduced linearly
with the number of blocks, and the BBFs become overly denseesoThereby, with respect
to cardinality estimation, a smaller number of large bloiskgreferable over more smaller
blocks.

We also see that for BBF densities suitable for membersisits téhe &ect of number
of blocks to cardinality estimation is negligible. For exaley for 200 thousand elements,
all BBFs in Figure 11 b. have a relative error of 0.0006450.00005. Therefore, a system
that requires both membership tests and cardinality estmahould configure the BBF
for reducing the false positive probability for memberstepts and for increasing the re-
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Block | Blocks | Items | Density Relative error Probabilistic bounds
length
(Kbits) Avg. Max. Std.dev.
Only number of elements varies
4 2 3000 0.519 | 7.25E-3| 0.030 | 5.47E-3| 70%2837-3161
90%2794-3205
4 2 9000 0.889 | 9.19E-3| 0.042 | 7.02E-3 | 70%8105-9893

90%7881-10117

Block length varies

128 2 100000{ 0.534 | 1.21E-3| 6.29E-3 | 9.24E-4 | 70%99043-100955
90%98764-101234
128 2 200000| 0.783 | 1.42E-3| 7.37E-3| 1.1E-3 | 70%197523-202474
90%196808-203189
256 2 200000{ 0.534 | 8.89E-4 | 3.9E-3 | 6.92E-4 | 70%198648-201351
90%198251-201748
4096 2 1E7 0.908 | 1.19E-3| 2.5E-3 | 3.93E-4 | 70%9964361-10035631

90%9953887-10046105

Number of blocks varies; the total BBF length remains cartsta
2048 1 500000| 0.212 | 3.68E-4 | 1.67E-3| 2.8E-4 | 70%:497981-502018
90%:497385-502614
204.8 10 500000| 0.908 | 6.4E-4 | 2.91E-3| 4.64E-4 | 70%:496438-503559
90%:495404-504594

Table 6 Estimation accuracy for BBFs. Note that the cumulative feragf the BBFs (i.e., Block lengtk
number of blocks) corresponds to the Bloom filter length ersults of Table 3.

duction flexibility, according to the analysis presente@éction 3. By doing so, cardinality
estimation will already be very accurate for most practigzlications.

Summarizing, the experimental results confirm the suitsttof Theorem 3 for cardi-
nality estimation for Block-partitioned Bloom filters. FBBFs with moderate densities that
are acceptable for membership tests, the theorem obtainsatae cardinality estimations
and tight probabilistic bounds.

6 Applications

Block-partioned Bloom filters, as well as cardinality esttion, are useful for a wide range
of applications. In this section we describe a few areas evbeirent approaches can benefit
from our contributions.

Distributed Query ProcessingCardinality estimation based on Bloom filters can pro-
vide the necessary statistics required for distributedygplanning algorithms. In particular,
most of the query planning algorithms for distributed dat#s share the same idea [29]: the
query planner optimizes the execution order of the joinssing selectivity estimates for
each join to predict the network cost that each executioarosebuld incur. Accurate selec-
tivity estimates lead to plans which save significant nekwesources. However, computing
the selectivity estimates requires extended network act@n between the query planner
and the participating databases. By using Bloom filters hacptoposed probabilistic car-
dinality estimation, the query planner cafigently compute accurate selectivity estimates.
For instance, to estimate the selectivity of an equi-jdie query planner can merge the
Bloom filter representations of the join attributes withadgte-AND, and use the resulting
Bloom filter to estimate the cardinality of the join. The ANBerged Bloom filter can be
further sent to the corresponding databases, for enabistigbdited Bloom joins [2, 3].
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Block-partitioned Bloom filters are useful for optimizingains of Bloom joins (i.e.,
when more than two nodes patrticipate). For chained Bloomsjdihe query processing
involves finding the intersection ofdistributed set$;, Sy, ..., Sy, by using Bloom filters
for reducing the network cost. The Bloom join algorithm greds as follows: (a) the Bloom
filters BF1, BF,, ..., BF, of the remote sets are collected in the coordinator, i.e.gtery
initiator, (b) the Bloom filter of the intersection is estited by joining the original Bloom
filters with bitwise-AND, (c) the Bloom filter of the intersian is propagated back to the
participating nodes for filtering out the elements that areimthe intersection, and, (d) the
elements that appear to be in the Bloom filter intersectiertrmnsmitted back to the query
initiator, where the actual intersection (join) is comglnd the results are presented to
the user. At step (c) of the above algorithm, it is benefigalthe coordinator to adjust the
resolution of the intersection’s Bloom filter to its dend®}. However, rebuilding a smaller
Bloom filter from scratch is not possible, since the intetisecis not yet materialized. If
BBFs are used instead, the coordinator can dynamicallyregensively reduce the length
and minimize the required network resources.

Content Caching and Distribution NetworksAnother application area for Block-
partitioned Bloom filters includes distributed systemd tharently exchange Bloom filter
summaries of their contents over the network, for the puemdslistributed caching [14], or
for optimizing content distribution [23, 30]. Depending their capabilities, nodes in these
systems may want to reduce the Bloom filter length beforeiagriiover the network, for
saving network resources. For instance, in Summary CaeteVieak nodes or nodes un-
der heavy load may choose to exchange smaller Bloom filtergefiucing their network
cost in the expense of more false positives. The optimal llétier length depends on the
bandwidth of the sender and receiver, the cost of each falsiiye, the current network
load and other network characteristics. Therefore, a Blfitiexr may need to be reduced
to many diferent lengths during its lifetime. Rebuilding the Bloomdilfrom scratch each
time involves unnecessary delays and computational oadrteand requires keeping a copy
of the set which may be impossible, e.g., in streaming datéh BBFs, this reduction can
be performed dynamically andfeiently, and with a near optimal false positive probability

P2P SystemsBlock-partitioned and Dynamic Block-partitioned Bloomtdils find a
wide range of applications in P2P networks. Currently, save2P systems employ stan-
dard Bloom filters as summaries for reducing the networkscésir example, Bloom filters
are used for reducing the network resources [11, 15], an@asing the quality of the re-
sults [13]. All participating peers use Bloom filters of a fixkength, which is problematic
in real-world P2P systems because some peers have sigtiifieaiger collections than oth-
ers [31]. Also, peers with weaker network connections cameduce the length of their
Bloom filters dynamically. BBFs and D-BBFs are a good repiaest of standard Bloom
filters for these systems, as they allow peers to dynamicalgpt the Bloom filter length
based on their collection size and on network charactesisti

Other P2P systems employ Attenuated Bloom filters (ABFs)efwabling query rout-
ing [32, 33]. Briefly, an ABF is an array of standard equi-fgngloom filters. Each peer
constructs an ABF and uses it to summarize its contents (#ieBlioom filter in the array),
the contents of its immediate neighbors (the second Bloder)fithe contents of its second-
order neighbors (the third Bloom filter), and so on. To linhie thetwork requirements, the
higher-order ABFs are constructed by merging the corredipgrBloom filters with bitwise
OR. However, this merging sacrifices the mapping betweemesiés and peers; it instead
creates a mapping between elements and paths. Thereforpeiy answering, the query
needs to go through all the intermediary peers, using thersevpath of the Bloom filters.
With BBFs we can avoid this issue, and still keep the netweduirements upper bounded.
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Each peer can reduce the resolution of the Bloom filters veddrom its neighbors, such
that they all sum up to the same fixed cost. Since each Bloaniitl correspond to exactly
one peer, the query can be routed directly to this peer.

Cardinality estimation for Bloom filters is also frequentlyquired for P2P networks.
For example, Bender et al. [13] but also Koloniari et al. [2#rge the Bloom filter sum-
maries of peers with bitwise-AND, to detect the peers withdmaller and larger overlap.
However, these works are based on the restricting assumibtad all Bloom filters con-
tain approximately the same number of elements. With owlt®sit is now possible to
accurately estimate this overlap, even when this assumjgtioot true.

Streaming.Block-partitioned Bloom filters and Dynamic Block-pamitied Bloom fil-
ters are important for summarizing sets of unknown cardiea) such as streams. The
stream listeners are frequently unaware of the streamheagyivell as the number of dis-
tinct elements in the stream, since the stream is often gwtedynamically. As such, they
cannot initialize the Bloom filter properly. If they overisate the stream length, they will
generate a very large Bloom filter which cannot be easily eget the network or stored.
On the other hand, underestimating the stream length vaidl te a very dense Bloom filter,
with an increased false positive probability. Instead,Bf#-s enable a dynamic reduction
of the length with a near-optimal false positive probapilivthereas the D-BBFs can also
increase the capacity of the filter, whenever this is require

Cardinality estimation can be applied in stream analyspiegtions, which frequently
use Bloom filters for summarization. For these applicati@ssimating the number of dis-
tinct events which occur within a time period can now be pented without any additional
effort. Similar requirements also occur frequently in the cafseetwork routing, for im-
proving the routing infrastructure [34], and in click stneanalysis, e.g., [27].

7 Related work

Following the wide applicability of Bloom filters, literate is rich in extensions of the
Bloom filter structure and its capabilities. The related kvoan be split in two categories:
(a) extensions which allow Bloom filters to represent mommglex information than just
set membership, and, (b) extensions that optimize Bloomrdilfor specific contexts and
applications.

Representing complex informatiorin [14], Fan et al. introduce Counting Bloom fil-
ters, which use a small counter at each position insteadsofoue bit. Counting Bloom
filters server two purposes. First, they can be used to eafittquency statistics instead of
just memberships. Second, they allow deletions of elem@ytslecrementing the respec-
tive counters). A limitation of Counting Bloom filters is thzne counters are of fixed size,
therefore they can be overflown if an element is very frequpectral Bloom filters [20]
address this limitation by using variable-length countdilsey use an fécient indexing
technique for the counters, which allows updates in constase and enables better space
usage compared to Counting Bloom filters. Kumar et al. [3Stdbe a similar probabilistic
structure, called space-code Bloom filters. Finally, thedgier filters proposed by Chazelle
et al. [19] make Bloom filters applicable more widely by emadplany kind of function to
be represented by Bloom filters, not just set membershipiegieBloom histograms, in-
troduced in [36], combine Bloom filters and histograms tddefficient indexes for path
expression queries, e.g., for XPath query processing. ey been extended to multi-level
Bloom histograms in [37]. Another approach to support pagiression queries is [38].
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It is straightforward to apply the principle of Block paititing to these extended rep-
resentations, to enable dynamic resolution reductionh Yeéispect to cardinality estimation,
an analysis in the line of the one presented here can be pexfttio cover counting, spectral,
and space-code Bloom filters as well.

Bloom Filter Optimizations.Mitzenmacher in [18] proposed Compressed Bloom Fil-
ters. The approach employs the fact that sparse Bloom fiigars a low entropy, therefore
they can be compresseffextively. Therefore, instead of creating Bloom filters vitie op-
timal density 0.5, the approach proposes creating largesgarser Bloom filters, and com-
pressing them to reduce their length. The resulting conspee8loom filter maintains the
same false positive probability as the original Bloom filtéote however that this technique
does not allow the user to choose the size that the Bloom fiitthave after compression.
Also, the compression cannot be performed on-the-fly on &tieg Bloom filter. Instead,
all the elements need to be re-hashed to a larger Bloom filtenéble compression.

Bloom filters are frequently used in networking hardware,,erouters or firewalls.
Because computing and memory constraints for these sydiéfies significantly from
software-level Bloom filters, specific optimizations arguiged [39-42]. Particularly in-
teresting for our work is the structure of Aggregated BloditeFs (ABF), proposed in [41].
Similar to Block-partitioned Bloom filters, ABFs split thét set into several segments, one
for each hash function. While ABFs resemble BBFs with resfemternal structure, their
purpose is completely flerent. Instead of optimizing memory usage, ABFs are useu-to i
crease access performance for hardware implementatiarsavallelization. In contrast to
BBFs, it is impossible to reduce the size of an ABF becausetimeber of blocks is part
of the hardware design, and cannot be reduced dynamicalydban the observed Bloom
filter density. The same applies to the work presented in [27]

Incremental Bloom Filters [43] were proposed for allowihg Bloom filters to extend,
for accommodating increasing set cardinalities. Theiccfiomality is very similar to Dy-
namic Bloom filters (cf. Section 4), but Incremental Bloortefis have advantages when the
probability density function for the set cardinality is kmo. For Dynamic Block-partitioned
Bloom filters, we have used Dynamic Bloom filters as a buildtagk instead of Incremen-
tal Bloom Filters, because Incremental Bloom filters areevcmmplex and do notfter any
advantage in our context. Nevertheless, Dynamic Blockitpmared Bloom filters could as
well be built over Incremental Bloom filters if it would be tedfitial for the context.

Set Cardinality Estimation with other Data StructuredVith respect to set cardinal-
ity estimation, we have proposed a technique which estsrtate cardinality of a set from
its Bloom filter representation. For completeness, we rudé there are several other data
structures which address the same problem, e.g., [44, 4Bhp@red to these works, our ap-
proach focuses on scenarios where a Bloom filter would any&agquired for membership
testing, or is already available, e.g., where Bloom joirsiazed. For these applications, our
approach enables estimating the set cardinality with ndiadél cost. Furthermore, Bloom
filters enable us to address scenarios which cannot be lihbglprevious works but are
nevertheless valuable for distributed databases, e.dindirthe cardinality of the intersec-
tion of two sets.

8 Conclusions

Bloom filters are of paramount importance for distributeglegations. They are used in
many distributed settings, ranging from distributed dasss to P2P networks and dis-
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tributed collaborative systems. Particularly for disttdd databases, they enabt&agent
distributed joins, and they are used to optimize standawdedisas top-k queries.

In this work, we proposed two novel Bloom filter features whinable additional
considerable optimizations for distributed databases. fdst contribution, the Block-
partitioned Bloom filter, is a Bloom filter encoding which ées dynamic and near-optimal
reduction of the filter’s length and number of hash functiernth practically no cost. As
demonstrated, the reduction of length and number of hagtiifuns enables significant sav-
ing of network resources in distributed query execution,iamirectly applicable on existing
distributed algorithms, e.g., Bloom joins. To the best aof kmowledge, this is the first pro-
posal of dynamic length reduction in Bloom filters. To enadtending the length of Bloom
filters as well, we introduced Dynamic Block-partitionedBin filters. The new structure
allows for both reduction and extension of the length of theoBh filter, to account for the
cardinality of the represented set and for applicatiorefiperequirements.

The second contribution of this work allows for cardinakistimation of Bloom filters,
with strict probabilistic guarantees. Our analysis sufgpstandard Bloom filters, Block-
partitioned Bloom filters, and also Bloom filters of non-miatkzed sets, e.g., the union
or intersection of two sets performed directly on their Biobilter representations. Bloom
filter cardinality estimation is important foffective query planning in distributed databases,
e.g., for estimating the selectivity of equi-joins. In thierk, we already identified several
algorithms in distributed databases and related areashwimimediately benefit from the
Bloom filter cardinality estimation approach, without amddional cost.

For both contributions we provided a comprehensive th&aeanalysis as well as a
large-scale experimental evaluation, covering a wide easfgapplication scenarios. Both
theoretical and experimental results confirm the genengliGgbility of our work to many
different applications and settings.

An interesting direction for future research is extendihg aforementioned contribu-
tions to derived Bloom filter variants, such as Counting Biciiters and Spectral Bloom
filters. For the case of BBFs and D-BBFs, their variants u§ingnting and Spectral Bloom
filters would enable a compact representation of multiséts dynamic resolution reduc-
tion, useful in many distributed applications. For the cakeardinality estimation, such
extensions would unfold new application areas, where timebau of instances in multisets
is also important, and not only the number of distinct eletsien
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