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Abstract—In this paper, we propose a probabilistic algorithm
for detecting near duplicate text, audio, and video resources
efficiently and effectively in large-scale P2P systems. To this
end, we present a thorough cost and probabilistic analysis that
allows the algorithm to adapt to network and data collection
characteristics for minimizing network cost. In addition, we
extend the algorithm so that it can identify similar videos,
even if some of the videos are split into different files. A
thorough theoretical analysis as well as a large-scale experimental
evaluation on networks of up to 100,000 peers using real-world
datasets of more than 200 Gbytes demonstrate the viability of
our approach.

I. INTRODUCTION

Efficiently and effectively searching for very similar files
over large file repositories is an active research topic, and was
extended for handling file types beyond text, e.g., video [22],
audio [20], and images [10]. This problem is generally known
as Near Duplicate Detection (NDD). Algorithms for NDD
have various applications in large file repositories such as
reduction of storage requirements [23], and detection of copy-
righted multimedia content [19], [16].

Near duplicates are frequently created in P2P networks dur-
ing normal file sharing operations, an example being different
recordings of the same movie that may exist concurrently in a
P2P file sharing network (cf. Fig. 1) whereby minor differences
between recordings can occur, e.g., due to advertisements,
or lossy compression. NDD can be used to find multiple
sources/peers for downloading the same resource in parallel, to
find the same video or audio resource at higher resolution, or to
filter out near duplicates from query results in order to present
only novel results to a peer. P2P networks that focus on Multi-
media Information Retrieval, e.g., SAPIR (www.sapir.eu) and
VICTORY (www.victory-eu.org), also benefit from identifying
near duplicates for enabling content-based retrieval of videos
and audio files [6]. However, NDD methods implemented in
these systems cannot scale to large P2P networks, since they
assume a central repository, and are based on costly, pair-wise
comparisons to detect the near duplicates.

In addition to centralized NDD algorithms, there are recent
proposals for P2P and distributed NDD algorithms, e.g., [1],
[9], [6], [20]. Most of these employ a family of algorithms
called Locality Sensitive Hashing (LSH) [3], [8] to map
resources to bit strings, and to build an index suitable for ef-
ficiently answering K-Nearest Neighbor (KNN) queries. NDD
queries can be reduced to incremental KNN queries, e.g., keep
querying for nearest neighbors until the difference threshold
for near duplicates is surpassed. Although these works achieve
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Fig. 1. Near duplicates and video linkage.

good results in terms of effectiveness, they can be substantially
improved in terms of efficiency by considering network and
collection characteristics, which is the main objective of our
paper.

In contrast to previous works, in this paper we address NDD
directly, instead of considering it as a special case of KNN.
This allows us to optimally select tuning parameters of LSH
which affect the network cost and the probabilistic guarantees
for the detection of the near duplicates. In this work, by tuning
these parameters, we minimize the network cost for LSH, and
we enable querying with constant cost and with probabilistic
guarantees, both of which are not possible with existing P2P
algorithms. Our approach, called POND (short for Peer-to-
peer Optimized Near Duplicate detection), is both efficient and
effective, and applicable to large P2P networks and to a variety
of file types. In our experiments, the optimization of POND
results in a cost reduction of several orders of magnitude.

In addition, we extend POND to cover a particular require-
ment of modern file sharing P2P networks: to link together
all videos that have large near duplicate segments (e.g.,
“titanic.mpeg”, with “titanic-partl.avi” and “titanic-part2.avi”
in Fig. 1), a problem known as Video Linkage (VL) [11].
This video splitting occurs frequently, e.g., when burning large
videos to CDs. By linking together these videos, we can
parallelize further the downloading of large video files, and
enable recovery of the downloading process even if all sources
of the original video file are disconnected.

The rest of this paper is organized as follows: We discuss
existing work on NDD in Section II. In Section III we present
the preliminaries for near duplicate detection. We describe the
P2P infrastructure used by POND in Section IV. Our main
contribution, the adaptation of POND to the network and
collection characteristics for minimizing the network usage
under probabilistic guarantees, is presented in Section V.
Section VI presents a large-scale experimental evaluation of



POND, using a real-world collection of over 200 Gbytes,
consisting of videos, audio, and text. We conclude and show
directions of our future work in Section VII.

II. RELATED WORK

Locality Sensitive Hashing (LSH) [8] has recently received
substantial attention with respect to the K-Nearest Neighbor
(KNN) problem, as well as for Near Duplicate Detection
(NDD). The main idea behind LSH, reviewed in Section III,
is to map similar elements to the same hash value with high
probability (using distance thresholds for both “high” and
“low” similarity). Bawa et al. [1] propose LSH Forest, which
allows the distance thresholds to be set per query, and show
how it can be deployed in a P2P network. However, LSH
Forest does not optimize network usage for NDD queries;
since its purpose is to enable the thresholds to be set per query,
it cannot tune certain parameters of LSH (more specifically,
number of hash tables [ and number of hash functions &
described later in Section III) which, as we will show, are
crucial for minimizing the total network cost. In fact, the cost
of indexing each resource in LSH Forest is O(I - k), which
is even higher than the corresponding cost of standard LSH
(O(log(l)) [8]. Furthermore, for query execution, the number
of peers that need to be visited is not constant as in the
standard LSH, but varies depending on the query parameters.
In this work we have a different focus than LSH Forest. For
the applications we consider and describe in Section I, the
distance thresholds do not change often; the thresholds may
still change at runtime, but not necessarily per query. Having
fixed thresholds enables us to select values for k£ and [ that
minimize the network cost, and to save a substantial amount
of network resources.

Similar to LSH Forest, several other P2P approaches address
the NDD problem by using a KNN infrastructure. In a recent
work [9], Haghani et al. present a P2P system based on
LSH, and in particular on p-stable hashing. Their approach
significantly reduces the cost compared to LSH Forest, as
it requires only [ indexes per resource. However, similar to
LSH Forest, this work focuses on KNN queries. As such, even
though it can execute near duplicate queries by reducing them
to incremental KNN queries, it does not optimize the LSH
configuration for minimizing the network cost. Due to this
lack of optimization, the cost for answering a NDD query
is not constant. By restricting the problem domain to NDD
queries only, the analysis and optimization presented in our
work could also be applied to their system for optimizing the
usage of network resources.

Dong et al. [4] focus on deriving analytically the optimal
configuration for LSH with the objective of minimizing the
computational time and maximizing the recall. They show
significant performance increase compared to an unoptimized
LSH. However, their approach only considers centralized
scenarios for which the expensive resource is the computation
time. As such, they do not consider the network usage which
is an important resource for high-churn P2P networks like the

ones considered in this work. Therefore, their results are not
applicable to P2P.

There is also some work on NDD and KNN for P2P
systems not based on LSH. Falchi et al. [6] present DINN,
an algorithm for incremental nearest neighbor in P2P based
on priority queues, which however requires an efficient P2P
range query, or an incremental P2P NDD implementation.
Otherwise, DINN needs to route each query to almost all peers,
and then cannot scale. Yang [20] proposes a P2P version of
MACSIS, an algorithm for detecting near duplicate audio files.
The algorithm is built over unstructured P2P networks, and
uses gossiping for query execution; therefore, it cannot scale
to more than a few hundred peers.

To the best of our knowledge, our paper is the first to pro-
pose a scalable P2P algorithm that adapts to the peer contents,
the network size, and the desired probabilistic guarantees for
addressing the NDD problem with near-optimal network cost,
without overloading the participating peers.

III. PREREQUISITES ON NEAR DUPLICATE DETECTION

In this section, we will provide an overview on Near Dupli-
cate Detection. To this end, we first formalize the objectives
of near duplicate detection and video linkage. We then discuss
representations for different multimedia resources, and finally
describe Locality Sensitive Hashing (LSH) which forms the
technical basis of POND.

A. Problem Definition

Each resource x € X has a type, e.g., audio, video, text.
Resources of the same type can have different formats, e.g., an
audio resource can be mp3, wav, etc. A resource representation
R(x) is a normalized format-independent representation of
resource x. In this work, we represent resources as sets of
strings. The transformation which produces R(z) from x
depends on the specific resource type. We will summarize dif-
ferent suitable representations and transformations for video,
audio, and text files in Section III-B.

Definition 1 (Similarity function): Given two resources i
and xo of the same type T € {audio, video, text}, the simi-
larity function Sim(R(x1), R(x2)) computes the similarity of
the two resources based on their resource representations. The
similarity values are in the range [0, 1].

A similarity value of 0 means that the resources are
completely dissimilar, while a similarity value of 1 denotes
identical resources. In this work we measure similarity using
Jaccard similarity, which is the standard similarity function for
sets: Sim(xq,x2) == WA

z1)UR(z2)]

Definition 2 (Near Duplicate resources): Given resources
x1 and x5 of type T'. The resources are near duplicates under
similarity threshold ¢ if they have Sim(R(z1), R(z2)) > t.

Threshold ¢ is in the range of [0...1]. Its value depends on
the application scenario. For instance, typical values for text
are between 0.8 and 0.95 [18]. For our application scenarios,
e.g., parallelizing downloads, or locating multimedia resources
of different resolutions (cf. Section I), this threshold is a fairly
stable system property for each resource type. For example,



downloading a video in parallel from two sources works only if
the two sources have a similarity higher than a high threshold,
otherwise merging of the two sources will produce unwanted
artifacts in the video. This threshold can even be determined a
priori, according to the merging algorithm and the acceptable
quality loss.

As explained in Section I, it is often the case that videos
have large overlapping segments, e.g., large videos may be
partitioned into two or more files for easy storage. The
smaller parts may additionally undergo post-processing, like
compression or re-encoding with a different encoder. We want
to be able to detect the relation between the partitioned files
and the original file, and link all resources together.

Definition 3 (Video Linkage): Given video resources x
and xo, the videos are linked if there exist non-empty segments
of x1 and o, denoted as Segment(z;) and Segment(zs),
such that Segment(x1) and Segment(x2) are near duplicates.

In this work we use ’part’ to denote the physical partitioning
of a video into two or more files (e.g. titanic-partl.avi and
titanic-part2.avi in Figure 1). In contrast, term ’segment’ refers
to a conceptual splitting of a video into smaller segments.

B. Resource Representations for NDD

POND can operate on different resource representations
and similarity functions for each resource type. To keep the
algorithm’s description independent of the resource types,
we now introduce a common resource representation for all
resource types, and describe appropriate transformations to
convert each resource to this common representation. We
also discuss about alternative representations and similarity
functions, which may be preferred for some scenarios.

Text resources. We process a text document z to produce
its representation R(x) as follows: (a) extract all terms from z,
(b) stem all extracted terms, and (c) filter out stopwords. Rep-
resentation R(x) consists of the set of remaining terms. This
combination of the bag-of-words representation and Jaccard
similarity is frequently used in IR for computing similarity of
text documents.

Audio resources. The standard approach for evaluating
similarity of two audio files consists of creating textual
acoustic fingerprints of the two files, and then using text-
based similarity measures to compute the similarity. Two
similar files are expected to have similar fingerprints. The
most frequently used non-proprietary fingerprinting technique
is fooid [12] which is integrated in several media players.
Fooid is fast and portable, and produces fingerprints which
are independent of the file format/encoding. For each audio
file, fooid produces 424 fingerprints, one for each dimension,
e.g., energy, tonality, length. We convert these fingerprints to
strings by concatenating the dimension id with the dimension
value for each dimension. This results in a set of 424 strings
for each audio file, which we use as a representation.

Video resources. In this work we use a representation of
videos based on the color histograms of the keyframes [21].
The keyframes of a video are the frames that differ sig-
nificantly from their preceding frames, i.e., more than a

given threshold. To generate the video representation, we
first detect the video keyframes, and compute their color
histograms in the HSV space. We then generate a fingerprint
of each histogram by finding and sorting the k& most populated
buckets, and concatenating their indices in a string. The
video representation consists of the set of fingerprints of all
keyframe histogram signatures. Video representations based on
keyframe histograms are a standard technique for partitioning
and indexing video resources [21], as well as for finding near
duplicate videos [17], [19].

In order to address the video linkage problem, videos
are conceptually split into segments. The splitting points are
decided using the keyframe extraction algorithm described
earlier, but using a higher distance threshold. Each video
segment is handled as an individual resource, with its own
representation. A record of the video segmentations is main-
tained by the peer that owns the video, such that the originating
video of each segment can be found during query execution.
Therefore, detecting a single near duplicate segment for the
query is sufficient for detecting the originating video, and for
linking it with the query.

C. Locality Sensitive Hashing

Locality Sensitive Hashing is often used for NDD in central-
ized environments. POND is also based on LSH (specifically
on [8]), which we briefly describe now. Our description
follows the notation of [8].

LSH is based on the notion of locality sensitive hash
families. Let M be a metric space (e.g., with dimensions
corresponding to terms for text documents), and d(-,-) the
distance function defined for any two points of M, (e.g.,
the Jaccard distance between two documents). A family of
hash functions H is locality sensitive if there exist positive
thresholds 1 and 7, and probabilities pry and pro for which
the following conditions hold:

o CI1: If the distance between two points d(p, q) (e.g., two
text documents) is less than the distance threshold 71,
then f(p) = f(q) with probability at least pri, where
f(-) is randomly chosen from H.

o C2: If the distance between two points d(p, g) is at least
equal to ro, then f(p) = f(g) with probability at most
pra, where f(-) is randomly chosen from H.

We now demonstrate how LSH works using text documents as
an example. The LSH algorithm is initialized by constructing
l hash tables htq, hto,...,ht;. To each hash table it binds
k hash functions fi(-), f2(-), ... fx(:), which are selected
uniformly at random from H. For inserting a document
d in this structure, the document’s representation R(d) is
used to compute [ different labels of length k: L(d) =
{Label,(d), Labely(d), . .., Label;(d)}. The algorithm com-
putes Label;(d) that corresponds to hash table ht;, in a bit-by-
bit approach. Bit i of label Label;(d) is generated as follows
(cf. Fig 2):

1) Hash function f;(-) (1 <14 < k) corresponding to ht; is

used to hash each term from R(d).
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Computing the ¢ bit of a label j for a text resource

2) The minimum hash value minval; produced by f;(-) for
all terms is detected.

3) minval; is mapped to a binary value by further hashing.
The resulting bit is used as the ¢’th bit of document’s
label.

For generating all k bits for Label;(d), this process is repeated
for i = 1...k resulting in the set £(d) of all labels for d.
Document d is then hashed in all ! hash tables using the
corresponding labels as keys.

For successful deployment of the LSH algorithm in P2P
environments we require: (a) an inexpensive method to store
the [ hash tables in a P2P network, (b) a way to coordinate the
peers so that they maintain the required hash tables, and, (c)
a distributed and dynamic approach to adapt the configuration
of LSH (parameters k and [) to minimize network costs. We
will elaborate on these issues in the subsequent sections.

IV. POND INFRASTRUCTURE

The backbone of POND is an inverted index combining
Distributed Hash Tables (DHTs) [15] and Locality Sensitive
Hashing (LSH) [8] described in Section III-C. POND indexes
the files/resources in this inverted index such that similar
resources are indexed using the same DHT keys so that
they can be efficiently located with standard DHT lookups.
The algorithm consists of two parts: (a) the indexing part
(Section IV-A) which is responsible for configuring and main-
taining the distributed index, and, (b) the query execution part
(Section IV-B), responsible for efficiently locating the near
duplicates of a query file.

The novelty of POND lies in the way the indexing part is
adapted to the network and data collection characteristics, such
that the required probabilistic guarantees are satisfied with the
optimal-minimum network cost. In this section, we only sketch
this process. We will describe the configuration/optimization
process in detail in Section V.

A. Inverted Index Maintenance

In Section III-C we have explained how the resource labels
are computed for different file types. We now elaborate on
how the inverted index on resources, constructed using the
resource labels as the keys, is configured and maintained. Our
implementation uses Chord [15] for the inverted index, but
any DHT implementation could be used.

The index maintenance algorithm is divided into three
steps: (1) algorithm configuration/optimization, where the core
parameters are determined for optimizing the algorithm, (2)
computing the labels for each resource, and, (3) indexing the
resources in the DHT to enable their retrieval with subsequent
near duplicate detection queries. These steps are repeated at
regular intervals so that the LSH configuration remains optimal
for the network size and for the content of the peers.

Step 1: Algorithm configuration/optimization. The pur-
pose of this step is to estimate the parameters of LSH that
satisfy the probabilistic guarantees with minimum network
cost. A randomly chosen peer p; collects statistics from the
network and computes the parameters that minimize the cost
of POND: the optimal number [ of labels per resource, and
the length k of each label. Then, p; uses the DHT overlay to
broadcast k and [ to all participating peers. Step 1 is a key-step
which we will describe in detail in Section V.

Step 2: Computing the labels. After receiving the updated
l and k values, the participating peers compute the labels for
their resources — [ labels of k bits for each resource. Com-
putation of labels is an inexpensive local process, described
already in Section III-C. In addition, labels are cached and
reused, even if they are computed for different k£ and [ values.
So, if either k or [ is increased, only the difference between
the existing labels and the new labels needs to be computed.

Step 3: Indexing. After each peer has computed the labels
for its resources, it needs to index each resource in the DHT-
based inverted index. For each resource x and for each label
Label;(x), the peer publishes a triple T :< i, IP, RecID >
using Label;(x) as a key, where ¢ is a label index, I P is the IP
address of the peer, and Recl D is a resource ID for resource .
(It is important to include ¢ because otherwise the peer holding
the triple cannot distinguish whether a resource x and a query
¢ have the same i’th label, or whether Label;(x) = Label;(q)
with i # j. Clearly, the latter case does not imply anything
about the similarity of x and q.)

To handle churn, peers use periodic republishing. When
a peer publishes a triple in the DHT, it attaches an expiry
time. If the triple is not updated within this expiry time, it is
automatically removed from the DHT. The expiry time of a
triple comes shortly after the next expected republishing time;
thereby resources are always indexed in the DHT, and obsolete
resources are removed soon after they expire.

Note that the presented infrastructure is not the only possible
infrastructure for POND. The main contribution of this paper
are the optimization techniques described in Section V. These
techniques can be applied, with some modifications, to other
systems as well, e.g., [9], [1] (see Section II).

B. Querying for near duplicate resources

A peer p, detects the near duplicates for a query resource
g as follows. First it uses R(q), the representation of ¢,
to compute the [ labels of ¢, denoted as L(g). For each
label Label;(q) € L(q), the peer retrieves from the DHT
inverted index the triples of all resources published using the
same label as a key. These resources are the candidate near
duplicates. Following, p, sends R(g) to all peers that hold
each of the returned resources, which then respond with links
to all their near duplicate resources. In the response, only the
resources that satisfy the minimum similarity with the query
representation are included. As we will show in Section V,
this process guarantees that each near duplicate resource will
be detected with a probability larger than a configurable value

Prmin-



N Number of peers

avgRes Average number of resources per peer
minSim  Minimum similarity for considering two
resources as near duplicates
Prmin Minimum probability that POND will
detect each near duplicate resource
l Number of labels per resource
k Length of each label in bits
TABLE T
NOTATIONS

The same algorithm is used for querying for video link-
ages, with the same probabilistic guarantees. Recall from
Section III-B that for VL, peers conceptually break each video
to segments, and index each segment individually. With respect
to query execution for video linkage, the query video is broken
into segments as well, and all near duplicates are retrieved for
each segment. We will show in Section VI that this approach is
very effective. In practice, not all segments need to be queried;
a peer stops querying as soon as it finds enough linkages for
efficiently parallelizing the download.

The most important application of NDD and VL in P2P is
parallelization of the downloads of large multimedia resources.
Clearly, a peer that needs to find the near duplicates does
not yet have the full resource, and hence it cannot compute
the resource representation. Therefore, it first downloads the
resource representation from another peer that has the full
resource. In this work we assume that peers already have an
approach to find at least one copy of the file, for instance,
using keyword search over a DHT index, as LimeWire and
other mainstream applications currently do. Since resource
representations are very compact, even for large videos, the
additional cost imposed by this process is negligible.

V. CONFIGURATION AND OPTIMIZATION OF POND

Having described the overall framework of the POND
algorithm in Section IV, we now elaborate on the first indexing
step of POND, i.e., configuring and optimizing parameters
of POND. We first provide an overview on this step in Sec-
tion V-A. In Sections V-B and V-C we present the theoretical
analysis (network cost analysis and probabilistic analysis)
which drives the network optimization of POND. Finally, in
Section V-D we combine cost and probabilistic analysis to
derive the optimal parameters [ and k for LSH that minimize
the total network cost and satisfy the desired probabilistic
guarantees. Table I introduces the notation used in these
sections.

A. Overview on the Parameter Optimization Procedure

The step of optimizing the LSH parameters [ and k£ in POND
is executed at regular intervals on randomly selected peers. The
problems that need to be addressed are: (a) Random selection
of a peer for executing the step, with minimal coordination
between the peers, (b) Statistics gathering, (¢) Computation of
the optimal values of [ and %k and their dissemination in all
participating peers.

Random Selection. For the random selection problem,
we require that one peer is randomly selected for executing
the algorithm every m minutes, and that all peers have the
same probability of being selected. We address this problem

using a simple randomized algorithm which is resistant to
churn and requires no coordination. More specifically, every m
minutes, each peer decides with probability 1/N to execute the
optimization, where N denotes the overall number of peers.
Thus, the expected number of algorithm executions per m
minutes is one.

Statistics Gathering. After a peer is selected to execute the
optimization, it estimates the following statistics:

1) the number of peers in network, using the approach

proposed in [7]
2) the number of resources per peer, and the query rate
3) the probability distribution function (PDF) for all pair-
wise resource similarities in the corpus
The latter two are estimated using random sampling on a
small percentage of peers, 1% in our experiments. Sampling
requires a small number of messages and negligible transfer
volume, thereby it does not overload the participating peers.
This simple method already provides good results, as verified
in our experimental evaluation, but alternative methods for
disseminating the statistics based on gossiping or random
walks are also possible, e.g., [7].

Computation and dissemination of the optimal 1 k.
Using the described statistics, the peer computes the optimal
values for [ and &, as we will describe in detail in Section V-D.
The optimal configuration is then disseminated in the network,
such that it can be further used for index maintenance and
query execution. For disseminating the configuration effi-
ciently, the peer constructs a message including the collected
statistics and the estimated optimal values for k and [. The
message is tagged with the local peer time, and broadcasted
over the DHT using an approach proposed by El-Ansary et
al. [5]. The algorithm requires O(N') messages and O (log(N))
time. It might happen that two peers are selected to perform
parameter optimization almost simultaneously. This is not a
problem for POND since during configuration dissemination
only the most recent configuration is kept.

B. Cost analysis

The network cost of POND is composed as follows: (a)
the cost of maintaining the DHT overlay, (b) the cost of
maintaining the locality-sensitive inverted index over DHT,
and (c) the cost of querying for near duplicates. The cost
of maintaining the DHT overlay is orthogonal to the POND
algorithm, therefore we do not integrate it in our analysis. The
reader can find a detailed cost analysis for Chord in [15].

Inverted index maintenance cost. Indexing one resource
in the DHT requires at most [ X (log(N) 4+ 1) messages:

o Executing [ DHT lookups (one DHT lookup for each of

the resource labels) requires at most [ x log(N') messages.

o Using the [ labels as keys, and publishing the resource’s

meta-data in the DHT requires [ additional messages.
Thus, the total number of messages for indexing all resources
in the network is: Cpaint < N -avgRes - (I -log(N) +1) =
O(N - avgRes -1 -log(N)).

Query execution cost. Let ¢ denote the resource for which
we wish to find the near duplicates, N.D(q) the set of all near



duplicates for ¢, and F'P(q) the set of resources that are falsely
identified as near duplicates (the false positives). Finding the
near duplicates of ¢ requires Cing < 1 - (log(N) +2) +2-
IND(q)| + |FP(q)| messages:

o Executing a DHT lookup for each of the [ labels of ¢
requires a maximum of [ - log(N) messages.

« Retrieving the candidate resources for the [ labels requires
2 - [ additional messages.

« Sending R(q), the representation of the query, to the peers
holding all candidate near duplicates requires a maximum
of IND(q)| + |F'P(q)| messages.

o Retrieving all near duplicate resources requires a maxi-
mum of |ND(q)| messages.

The total cost per republishing period is a linear combina-
tion of Cyainte and Cyipng. Let y denote the expected number
of queries at each republishing period. Then, the total cost is
Ctotal = Cmaint +y- sznd

We now have the cost expressions for all aspects of the
algorithm. In the following sections we show: (a) how to get
an estimate for |FP(q)|, and, (b) how to choose the two
parameters of POND, [ and k, such that the total cost is
minimized.

C. Probabilistic Analysis

First, we compute the probability that a near duplicate
resource will be detected by POND. Then, we derive the
expectation for the number of false positives that the algorithm
retrieves per query.

The following lemma computes the probability that two
resources x and y have the same label Label;, corresponding
to hash table ht;.

Lemma 4: Given resources x and y with similarity
Sim(x,y). The probability that the j’th label of x is identical
to the j’th label of y is: kg

Pr[Label;(x) = Label;(y)] :Z (z) (1 = Sim(z,y))"
i=0

Sim(z,y)*F=D - (0.5)

Proof: Pr[Label;(x) = Label;(y)] can be expressed as
a product of the individual probabilities of the & bits in the
corresponding labels to match. As explained in the previous
section, the individual bits of the labels are set using min-
wise hashing followed by binary hashing. If the result of
min-wise hashing of two resources is the same, the result
of the binary hashing is also assured to be the same. If the
result of the min-wise hashing is not the same, the result
of binary hashing can still be the same with probability 0.5.
More specifically, the probability that x and y have the same
label Label; is computed as follows. Consider the min-wise
hashing value computed for a single hash function f;(-) € H,;.
The probability that min-wise hashing of the two resources
using hash function f;(-) yields the same result depends on
the similarity of the resources. For the case that Sim(z,y)
denotes Jaccard similarity between the two resources, Broder
et al. [2] show the following:

Primin{fi(z)} = min{f;(y)}] = Sim(z,y) (1)

where min{ f;(-)} denotes the min-wise hashing values of the
resources using f;. Because of pairwise independence of the
hash functions in H;, the probability that 7 of the & min-wise
hash values of x and y are pairwise equal is Sim(z,y)t. It
follows that the remaining (k — ¢) min-wise hash values are
not pairwise equal with a probability of (1 — Sim(z,y))*°.
Owing to binary hashing that follows the min-wise hashing,
the probability of these (k —4) min-hash values to still map to
equal binary values is given by ((1—Sim(x,y))*~%(0.5)¥~%).
Factor (]f) accounts for all combinations of i out of k (0 <
1 < k). ]
Clearly, we cannot consider Sim(z,y) for all possible re-
source pairs. However, by definition the similarity of two near
duplicate resources is at least min.Sim, and we can use that
to obtain a lower bound for the probability in Lemma 4. We
now compute the probability that two resources x and y have
at least one common label.

Theorem 5: Given resources x and y with similarity
Sim(x,y). The probability that 2 and y have at least one
common corresponding label is given by

Prioma = 1 — (1 — Pr[Labelj(z) = Label;(y)])!  (2)

forany j € [1...1].

Proof: The j’th label of x and y do not match with a
probability of (1 — Pr[Label;(z) = Label;(y)]), which can
be computed with Lemma 4. The probability that none of the
labels of = and y match is (1— Pr [Label;(z) = Label;(y)])".
The probability that at least one of the [ labels matches is given
by priowda = 1 — (1 — Pr[Label;(z) = Label;(y)])". [ |
The POND algorithm will detect two resources as near dupli-
cates if they have at least one common corresponding label.
Therefore, the probability that each near duplicate will be
detected by the algorithm corresponds to the probability given
by Eqn. 2.

Estimating the number of false positives. The false
positives for a query ¢ are the resources that are detected
by the algorithm as near duplicates but have similarity with
q lower than minSim. Peers in POND detect these re-
sources as false positives before transferring them over the
network. Nevertheless, as explained earlier, false positives
cause additional network overhead, due to the process involved
for detecting and filtering them out. Therefore, we need to
estimate the number of false positives for the purpose of
accurately modeling and minimizing the network cost.

We use S to denote the set of all resources in the network
having similarity with ¢ less than minSim. Using Theorem 5,
the expected number of false positives E(|F'P(q)|) can be
computed as follows:

E(FP(q)) = 3. (1~ (1 - Pr[Label;(x) = Label,(q)])')
€S

The estimation of the number of false positives using the

above equation is costly to compute as it requires computing

all similarities between the query and all available resources.

An efficient alternative is to estimate |F'P(q)| using an ap-

proximation for the probability distribution of similarities. Let



p(zx) denote the probability distribution function (PDF) of the
pairwise similarities of all resources in the corpus. Then, the
expected number of false positives is:
minSim

E(IFP(q)]) = avgRes - N - / P(2) - Priasets(z) de
where prigpers(2) denotes the probability that two resources
with similarity x share at least one label, and is computed
using Equation 2. For a discrete PDF, we derive an analogous
expression by replacing the integral with a sum.

The PDF p(x) depends on the corpus collection and the
chosen similarity measures. Our experiments with large col-
lections (Section VI) indicate that Zipf is a good fit for the
case of text, video and audio collections, if we use Jaccard
similarity and the representations described earlier. For esti-
mating the Zipf coefficient, POND uses peer sampling during
the optimization step, as described earlier in this Section.

D. Minimizing the Network Cost of POND

We are now ready to find the values for k and [ that
minimize the network cost. Recall from Section IV that
POND should find each near duplicate with a probability at
least pry,;n. By reducing Equation 2 for £ and solving for
Dlound = Prmin and Sim(x,y) = minSim we find the value
of k that will return each resource with similarity at least
minSim, with a probability higher than pr;,;,. This value,

log(1—(1=promin)*/")
log(Ob—W)-{-log(minSim)

Next, we show that kg is also the value for k that minimizes
network cost.

Theorem 6: For given [, minSim and pr,,;, the value of
k that minimizes network cost is k = | ko |

Proof Sketch: From Equation 2 we see that probability
Driound increases monotonically if k& decreases and all other
parameters are fixed. Therefore, for all k < kg, the value of
Priound Will be higher than or equal to the probability pr,in
required by the user. Regarding network cost, the value of &
is orthogonal to maintenance cost, but affects query execution
cost due to the false positives. The number of false positives
monotonically decreases with k. Therefore, the number of
false positives will be reduced by selecting the maximum k
value for which prigung = prmin. This value is k = kq. B

So far, we have assumed that the optimal value for parame-
ter [ is given. We now show how to eliminate this assumption.
Finding theoretically the value of [ that minimizes the cost is
complicated. However, we can easily compute the optimal [
using the following algorithm. We start with [ = 1, and find
the optimal k£ according to Theorem 6. For these pairs of &
and [ we compute the expected cost, according to the analysis
presented in Section V-B. We then increment [, and repeat
the computations. For some value of [/, denoted with l;,,, the
expected cost will start to increase, i.e., the cost for [ = ;.
will be higher than the cost for [ = [;,. — 1. The optimal
value of [ is l;,,. — 1. This holds because the cost function
is convex, and therefore has only one minimum, namely at
1. Note that this algorithm is executed once per

denoted as kg, is: kg =

l = linc -

republishing period, at the peer which performs algorithm
optimization. It is computationally inexpensive and requires
no network resources; thus, it does not constitute a bottleneck.

VI. EXPERIMENTAL EVALUATION

The purpose of our experimental evaluation was threefold.
First, to compare POND with an NDD algorithm which does
not optimize the values of k and [ for demonstrating the
significance of optimizing k£ and [ dynamically. Second, to
examine the efficiency and effectiveness of POND on different
real-world collections and system configurations. Third, to
evaluate the proposed extension for video linkage.

A. Datasets and Evaluation Setup

POND was evaluated on three large, real-world
collections. As a text collection we have chosen
REUTERS Corpus Volume I (RCVI) [13], a publicly
available standard dataset in IR consisting of 802,253
newswire articles preprocessed using stemming and stopword
filtering. It contains many near duplicates, which we used
as queries for our evaluation. We computed a ground truth
by comparing all articles pair-wise, and detecting all near
duplicates. For videos, we constructed a collection by
crawling a sample of Youtube videos with Tubekit [14]'. The
collection contains 22,455 videos with a total volume of 144
Gbytes. We did not consider existing publicly available video
benchmarks such as the TRECVID collection because all
of them just contain a relative small number of videos (less
than 200), and therefore cannot be used for simulating P2P
networks of reasonable sizes. For audio, we extracted the
audio tracks of the described Youtube collection as MP3s,
amounting to a total size of 82 Gbytes. The size of all three
datasets sum up to 227 Gbytes.

For the text collection, we simulated a P2P network of
100,000 peers, structured over a Chord DHT [15]. All articles
were distributed uniformly among the participating peers. For
the video and audio collections which had less resources, we
simulated a network of 1000 peers, distributing the resources
uniformly among peers as well.

For constructing the query set we compared pair-wise all
resources, and identified all pairs of resources with similarity
higher than a threshold minSim for minSim € {0.8,0.9}.
Some of these pairs were in fact exact duplicates, e.g., the
same video with a different file name. POND detected all exact
duplicates, since these were always producing identical labels.
Since these resources could also be detected with traditional
hashing techniques, they were filtered out of the query set for
the experiments reported here.

For each configuration, we measured the total network cost,
i.e., the number of messages required for both maintenance
and query execution. The quality for query execution was
computed using the standard recall measure, i.e., the per-
centage of detected near duplicates. There was no need to
measure precision separately, since this is always 1 due to

'We would like to thank the author Chirag Shah for assisting us with the
crawling task.
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Fig. 3. Cost versus number of hash tables [, for minSim = 0.9

the way POND collects all near duplicates. As explained in
Section IV, resources which are not near duplicates of the
query are efficiently filtered out and are neither transmitted
over the network to the query initiator, nor presented to the
user as a result of the query.

B. Comparison with LSH

The advantage of POND compared to previous LSH algo-
rithms is that it dynamically optimizes the values of k£ and [
so that the total network cost is minimized. To find out how
significant this optimization is for P2P networks, we compared
POND with a P2P implementation of the original LSH [8], in
which k£ and [ are chosen manually by the user. In particular,
we compared POND with the P2P algorithm LSH (K) in [1].
Since the procedure of choosing [ and k values is the only
difference between the original LSH implementation and that
of POND, the difference observed in the efficiency of the
two algorithms can be directly attributed to the optimization
performed by POND.

For this experiment, we indexed the collections in a network
of 100,000 peers, and varied the rate of queries per republish-
ing period between 10 and 10'5. Since original LSH does
not offer an approach to select [ and k, we tested it for all
possible combinations of [ and £ that satisfied pry,;, = 0.9.
For each configuration we measured the total network cost,
i.e., the aggregate cost for maintenance and query execution.
The observed costs are shown in Fig. 3. Please note that
Y axis uses logarithmic scale. The results correspond to the
experiment with the RCV1 collection, which is the largest in
terms of number of resources — the results with the video
and audio collections were very similar, and are omitted. For
clarity, the figure includes only the most efficient configuration
for each [ value.? For comparison, the figure also includes the
cost incurred from POND for the same pr,,;, and query rates.
As POND selects exactly one k£ and [ combination for each
query rate, its cost is presented as a single point.

We observe that the cost of original LSH depends heavily
on the value of /. On the one hand, setting [ too low leads to
a very low k, and this increases the number of false positives
by several orders of magnitude. On the other hand, setting

2With respect to the original LSH, for a given pair of I and k values that
satisfy the probabilistic guarantees, all other configurations with the same [
but with &/ < k also satisfy the probabilistic guarantees, albeit with higher
costs.

I too high imposes the unnecessary overhead of maintaining
more hash tables. The difference between the optimal and the
incurred cost for each setting can be several orders of mag-
nitude. More importantly, we see that there is no universally
optimal value for [ and k, but the optimal values depend on the
system properties, which may even vary with time. In contrast,
the default cost of POND for each setting is always almost
equal to the global minimum cost of the original LSH; the
extra network cost induced by the POND optimization step
is negligible. This means that POND always finds the best
configuration for [ and k, and minimizes the cost.

We also repeated the experiment with the two multimedia
collections, as well as with different network sizes. The exper-
imental results were similar to the presented ones, additionally
confirming the importance of optimizing the values of [ and &
for minimizing the network cost. In conclusion, by optimizing
the values of [ and k for the given configuration, POND can
reduce the total network cost by several orders of magnitude.

C. Effectiveness for near duplicate detection

Effectiveness for NDD is measured with recall (precision
is always 1, as explained in Section VI-A). As ground truth,
we use all the true near duplicates, which are detected with a
pair-wise comparison of all resources. Figure 4 presents recall
for different values of pry,,, and for minSim € {0.8,0.9}.
As expected, recall increases if pr,,;, is set to higher values.
In particular, at higher pr,,;, values, the optimization step
increases the number of hash tables or reduces the hash func-
tions, in order to satisfy the higher probabilistic requirements.
This behavior is consistent for the three different resource
types.

We also see that even for very low pr,,;, values, recall
values remain within acceptable levels. For example, for the
RCV1 corpus, recall is always higher than 0.8, even for
DPrmin = 0.5. The reason for this is that POND computes the
probabilistic guarantees considering the minimum similarity
value minSim, whereas most of the near duplicates have
similarity higher than minSim. Therefore, the probability
that a near duplicate is found is higher than the obtained
probabilistic guarantees for most of the near duplicates. For
the same reason, recall increases slightly if minSim is 0.8,
compared to minSim = 0.9.

D. Network cost

Figure 5 shows network costs for different values of pr,,in,
with minSim set to 0.9. All plots present the cost split
into two types: (a) maintenance cost, which is the average
number of messages required by POND for indexing a single
resource in the network, and, (b) query cost, corresponding
to the average number of messages required for detecting and
retrieving all near duplicates of a query, and for filtering out
all non near-duplicates.

We observe that both indexing cost and query execution
cost remain within reasonable limits. For example, for the
RCV1 experiment with pr,,;, = 0.8, maintenance requires
less than 40 messages per article, whereas querying requires
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text documents is slightly higher than the respective cost for
0.95 video and audio resources. This difference is mostly attributed
0.9 to the difference of network sizes in the corresponding exper-
= imental setups as it affects the cost of DHT lookups. Since
© .
8 0% POND uses DHT lookups both for maintenance and query
08 execution, the respective costs are also affected. The increase
is only logarithmic to the network size. We also observe
075 that querying costs for audios and videos differ slightly, even
0.7 though the audio resources are generated from the videos. This
PSSP PELL P OO H® P happens because there are more near duplicates in the audio
VW O S R A R A collection, compared to the video collection. The most typical

Original video size range

Fig. 6. Video Linkage: Recall versus average file size for videos broken to
2, 3 and 4 parts

less than 80. Note that for the aforementioned configuration,
recall is already above 0.95. Furthermore, as expected, in-
creasing prqq, causes higher network cost, because POND
increases the number of hash tables [ to satisfy the required
probabilistic guarantees. Nevertheless, even for pry,;, = 0.95
which provides a recall of almost 1, maintenance cost does
not surpass 70 messages per resource. These observations are
valid also for the audio and video collections.

We also see that query execution cost is always higher
than maintenance cost. As described in detail in Section V-B,
maintenance cost involves performing [ DHT lookups, while
query execution cost additionally requires contacting all can-
didate peers and collecting all the near duplicates. Therefore,
maintenance cost per resource is expected to be less than query
execution cost.

Finally, it is interesting to compare the costs incurred for
different types of resources. We observe that cost related to

case in which two audios were near duplicates while their
corresponding videos were not, was songs accompanied by
slide-shows, i.e. two videos having the exact same song as
audio but showing completely different slide-shows.

E. Video Linkage

We also evaluated POND for the video linkage problem. For
generating a query set Q, we selected a subset of videos with
file sizes uniformly distributed between 20 and 120 Mbytes,
and split them to 2, 3, or 4 equal-sized parts. We then used
all partial videos ¢ € Q as queries for POND. A query was
considered successful if it returned the original video from
which it was created. Similar to the previous experiments,
precision was always 1 due to the way POND collects the
near duplicates (see Section VI-A).

Figure 6 plots the average recall for different video file
sizes. The algorithm is initialized with pr,,;, = 0.9 and
minSim 0.9, and runs on a network of 1000 peers. We
observe that recall increases significantly with the size of the
original video. For example, recall for the smaller files (20 —
40 Mbytes) is around 0.75, while recall for larger files (100 —



120 Mbytes) is almost 1. This is expected: since each query
segment is handled as an individual resource, the probability
that a query succeeds increases exponentially with the number
of overlapping segments between the query and the full video.
The number of common segments increases with the full video
size, and with the query size. For the same reason, recall is
below the expected value of 0.9 for very small files, and also
decreases slightly with the number of splits. However, for large
videos, like the ones that often occur on the Internet, recall is
practically 1.

With respect to network cost, the cost for video linkage
is typically higher than the cost of NDD because each video
segment is indexed and looked-up individually. In our exper-
iments, maintenance cost for video linkage was at most 110
messages per video, which is easily affordable. This cost is
distributed uniformly among all participating peers, as it is
mostly composed of DHT lookups. Additional cost optimiza-
tions can be achieved by reducing the number of segments
in each video, i.e., by increasing the distance threshold for
splitting a video to segments. Including this threshold in the
optimization analysis is part of our future work.

In conclusion, POND efficiently and effectively addresses
the video linkage problem. Especially with respect to large
videos, like the majority of the videos on the internet, it offers
a recall very close to one.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented POND, a novel algorithm for near
duplicate detection whose key innovation lies in the deploy-
ment of parameter optimization to minimize network usage.
We derived probabilistic guarantees for the success of POND
to answer NDD queries, and showed how it automatically
configures the core parameters of the underlying indexing
method. Furthermore, we extended POND to address the video
linkage problem. A large-scale experimental evaluation using
real world datasets of more than 200 Gbytes demonstrated the
importance of optimizing the LSH parameters for reducing
the cost of NDD in P2P networks. The results confirm that
POND successfully optimizes the LSH parameters, reduces
the network cost to the theoretical minimum, and satisfies the
required probabilistic guarantees. The incurred network cost
is easily affordable by the participating peers, even for huge
networks and collections, making the algorithm suitable for
integration in any mainstream DHT-based file-sharing system.

Regarding future work, we aim to repeat the theoretical
analysis of POND for other P2P network configurations [1],
[9]. These systems currently address NDD as a special case
of the KNN problem, and therefore POND cannot be ap-
plied directly to optimize the network cost. Specializing the
functionality of these systems to only NDD queries with
fixed distance thresholds would enable the application of our
optimization method. Furthermore, we will investigate how the
performance of POND is affected by the similarity measures
and the resource representations of multimedia files, allowing
for a more directed choice of similarity functions to help
further reducing network costs in P2P systems. Finally, we

will explore new application scenarios of NDD in multimedia
mining and retrieval over existing P2P file sharing networks,
such as Limewire. Specifically, we believe that the proposed
technique has direct applications to metadata-based search,
where annotations (such as tags or descriptions) provided by
different users for near duplicate content can be combined to
build more comprehensive indices.
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