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Abstract We propose a novel collaborative approach for
document classification, combining the knowledge of mul-
tiple users for improved organization of data such as indi-
vidual document repositories or emails. To this end, we
distribute locally built classification models in a network
of participating users, and combine the shared classifiers
into more powerful meta models. In order to increase the
propagation efficiency, we apply a method for selecting
the most discriminative model components and transmit-
ting them to other participants. In our experiments on four
large standard collections for text classification we study the
resulting tradeoffs between network cost and classification
accuracy. The experimental results show that the proposed
model propagation has negligible communication costs and
substantially outperforms current approaches with respect
to efficiency and classification quality.
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1 Introduction

Automatically structuring heterogeneous document collec-
tions into thematically coherent subsets is a relevant task
for a variety of Web applications, such as focused crawl-
ing, structuring Web directories, social bookmarking, and
email spam filtering [6, 14, 29, 40]. For these classification
applications, supervised learning has become the method
of choice. Supervised machine learning approaches employ
the following methodology: they use a set of training items
manually assigned to categories by the users, to build clas-
sifiers for automatic assignment of category labels. A suf-
ficient amount of training data is crucial for achieving high
classification accuracy. However, labeling enough data and
keeping the training set sufficiently diverse and up-to-date
can require a substantial manual effort.

Collaborative solutions, where users combine informa-
tion and resources, have recently gained importance in
various areas, e.g., collaborative semantic desktop [38],
collaborative tagging [50], sharing of e-mail signatures
for spam detection [31], P2P telephony, e.g., Skype, and
video streaming [44]. Collaborative solutions have been also
explored for classification, to address the issue of insuffi-
cient training data [3, 35, 37, 43, 46]. The basic idea of
collaborative classification is to aggregate information from
different users in a collaborative network, for constructing
better machine learning models that can be used by every
network member for their individual information demands.
A naive approach based on sharing training samples directly
among users to obtain larger training sets is prohibitive,
since it ignores privacy, security, and copyright aspects of
the user’s personal information sources, and also leads to
high network cost for the participants.

For distributed classification, Luo et al. [35] introduce
a voting-based algorithm for P2P networks, where voting
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vectors with components corresponding to vote counts for
categories are maintained in a distributed manner. However,
their setting implies that personal (test) data to be classi-
fied have to be either available on all peers or need to be
propagated. In [3] only a selected subset of training vec-
tors, namely the support vectors obtained from locally built
RSVM models (a modification of support vector machines)
are propagated in the network; this helps to overcome some
of the privacy and network cost issues, however, only to a
certain extent.

To avoid these constraints, in this paper we follow a dif-
ferent approach, where collaboration is based on exchang-
ing of classification models, instead of training and test
data. Each node combines classification models received
from other nodes with its own model to build a meta
classifier, which is then used for organizing the user’s
individual document collection. Compared to typical, stand-
alone classifiers, meta classifiers do not suffer from a cold
start problem, and are substantially more accurate since
they correspond to a much larger training set. As model
dissemination infrastructure, we use an unstructured peer-
to-peer network. For instance, participating nodes might use
a plug-in for folders in their file system for enabling col-
laborative document organization, or an email client plug-in
for enabling collaborative spam filtering. The infrastructure
is fault-tolerant, and does not require central coordination.

We also investigate cost reduction for the described
setup. To drastically reduce communication costs and to
enable a fine-grained and flexible control of the cost/quality
tradeoff, we combine meta-classification [43] with model
dimensionality reduction [39]. Instead of exchanging the
complete models, participating nodes only distribute the
most important model components. This approach enables
participating users to build highly accurate meta models
with negligible network cost, sufficiently small for mobile
networks.

The performance of the proposed approach is validated
experimentally on a wide range of large-scale evaluation
scenarios, using four real-world standard classification col-
lections. The experiments focus not only on evaluating the
proposed approach, but also on a thorough study of the
benefits of collaboration, the impact of the constituting
components, as well as the relevant tradeoff between effi-
ciency and effectiveness. The considered baselines include
the state-of-the-art approaches in distributed classification,
as well as a classifier simulating the optimal classification
accuracy that could be achieved assuming that all data could
be centralized. The experimental results demonstrate the
importance of collaboration for improving the classification
accuracy, identify the sweet spots with respect to the effi-
ciency/effectiveness tradeoff, and quantify the quality loss
compared to the “hypothetical” centralized classifier. Fur-
thermore, the results validate the superiority of our proposal

compared to the state-of-the-art distributed classifiers with
respect to efficiency and effectiveness.

Contribution In this paper we propose a collaborative clas-
sification system running on top of a peer-to-peer network.
The system relies on a novel combination of off-the-shelf
components for classification, feature selection for efficient
model propagation, and meta classification. We consider the
system’s simplicity and easy reproducibility to be an impor-
tant asset of this work, enabling direct exploitation in a
wide range of environments and application scenarios, and
increasing the chance of our methodology being applied in
practice.

We provide a thorough experimental study of the influ-
ence of model propagation and model dimensionality
reduction on classification accuracy and distribution effi-
ciency, using real-world datasets. The evaluation focuses
on the quality/cost tradeoff, and identifies sweet spots for
the corresponding parameters. The described combination
is shown to clearly outperform complex state-of-the-art
approaches for collaborative classification.

We would like to make explicit that this paper does
not deal with inventing new system components; in the
contrary, we consciously employed established technology.
However, refining or replacing components can be eas-
ily conducted within our framework, and might make an
already well-performing system even better compared to
existing collaborative classification approaches.

Outline The remainder of this paper is organized as follows.
In the next section we summarize and compare related work
on collaborative classification. In Section 3 we describe
the system used, shortly reviewing components used for
classification, distribution of local models, dimensionality
reduction, and the construction of meta classifiers. The main
Section 4 shows the results of our large-scale evaluation
with respect to classification accuracy and efficiency, as
well as comparisons with existing approaches. We conclude
and describe directions of our future work in Section 5.

2 Related work

The machine learning literature has studied a variety of
ensemble based meta methods for centralized setups, such
as bagging or stacking [10, 32, 49]. For bagging, an ensem-
ble consists of classifiers built on bootstrap replicates of
the training set, and the classifiers outputs are combined by
plurality vote. For stacking, on the other hand, multiple clas-
sifiers are trained on different parts of the training set and
evaluated on the remaining training documents. The outputs
of the classifiers are then used as feature values for training a
new classifier. Whereas ensemble-based methods have been
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shown to substantially increase the classification accuracy,
existing approaches do not deal with distributed settings
due to the increased required data volume to be transferred
across the collaborating nodes, which prohibits scalability.

Also focusing on centralized settings, Mladeni¢ et al.
[39] describe a pruning method for normal vectors of
Support Vector Machines (SVMs), which they use for fea-
ture selection to increase the training efficiency and reduce
the resource requirements. Our work is the first to apply
this technique in the context of efficient model propagation
in a distributed environment. Another technique for dimen-
sionality reduction was proposed in [6], for the purpose
of reducing memory requirements, again for local classi-
fication. However, the technique uses feature hashing to
collapse several features into one dimension, which can
substantially degrade classification quality, as we show in
Section 4.

Distributed collaboration for data mining tasks has also
been considered in the literature. The related works can be
characterized according to: (a) the distribution infrastruc-
ture, and, (b) the meta-classification approach. With respect
to distribution, centrally coordinated, e.g., [46], hierarchical
(Miningehome), and purely decentralized P2P data min-
ing algorithms have been proposed. The latter group of
algorithms, which are also the most relevant to this work,
are realized either using a distributed hash table [5], or an
unstructured topology [3, 35, 43]. These algorithms employ
various meta-classification techniques. For example, in [37]
the parameters of local generative models are transmitted to
a central site and combined. Luo et al. [35] instead introduce
a voting-based classification algorithm in a P2P network.
They compute voting vectors with components correspond-
ing to vote counts for categories in a distributed manner.
While very interesting, their setting substantially differs
from ours in that test data in their scenario either have to
be available on all peers or have to be propagated (instead
of exchanging classification models). This is prohibitive in
applications such as spam filtering, both in terms of network
cost for large test sets of emails, and also due to privacy
reasons. To reduce network cost for distributed classifica-
tion, Cascade RSVM [3] relies on Reduced SVM [33]. A
variant of Cascade RSVM, which uses a DHT as the under-
lying topology has also been proposed recently [5], where,
instead of sharing complete training sets, peers exchange
only their support vectors. Then, in a cascaded classification
process, the peers add the received vectors to their respec-
tive training set and re-classify, until the process converges.
In Section 4, we show that for high-dimensional data our
approach clearly outperforms Cascade RSVM.

In [4], Ang et al. present a novel approach to address
the issue of disjoint and skewed data distribution. Their
P2P Adaptive Classification Ensemble (PACE) framework
treats this issue by letting the peers form clusters and
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compute error rates for their local classification models.
These error rates are taken into account to weigh the votes
of the local classifiers, thus adapting the distributed clas-
sifier dynamically to the data distribution, based on the
results of the training phase. PACE currently requires dis-
tribution of the full local models to all participating peers,
thus incurring high communication costs, in particular for
high-dimensional data. Our work focuses on minimizing
these costs, but does not (yet) include neighbor selection and
weighing of local models. Therefore, PACE and our work
complement each other favorably.

The proposed collaborative classification algorithm
belongs to the class of local algorithms, i.e., each node only
needs to cooperate with a small set of nearby neighbors to
perform the desired tasks. Most local algorithms rely on
peer gossiping to distribute complex algorithms. The com-
mon characteristic of these algorithms is that they enable
peers to “meet” and gossip/exchange information relevant
for the execution of the algorithms, such as, computing
averages [36], conducting majority votes [42], or even main-
taining online communities [7, 8]. Local algorithms scale
extremely well, and are very robust because any failure only
affects a small neighborhood.

Epidemic techniques are special type of gossip-based
algorithms, where the information from each peer is propa-
gated recursively to the whole network through neighboring
links. Due to their easy deployment and high resilience to
failures, epidemic algorithms have been frequently consid-
ered in the literature for solving problems that demand the
contribution of all peers. For example, Eugster et al. [23]
argue for employing epidemic algorithms for information
dissemination in completely decentralized P2P systems.
Voulgaris and van Steen [48] propose the use of an epidemic
protocol for maintenance of a semantic overlay network
over large-scale P2P networks, to enable content-based
search. Epidemic algorithms are also frequently exploited
in the context of data mining. For instance, Di Fatta et al.
[20], as well as Datta et al. [19] propose epidemic variants
of K-means (see also [18] for a survey on P2P data min-
ing through gossiping). In this work, we choose not to use
an epidemic protocol for classification; instead, peers only
exchange messages corresponding to their own data, and
not to the data received by their neighbors. We discuss this
decision more thoroughly in Section 3.

Our notion of distributed model sharing and propagation
in a P2P environment is based on the work of Siersdorfer
et al. [43]. However, that work treats classification effective-
ness aspects only, not considering the incurred communica-
tion costs. Since complete models are exchanged between
nodes, these costs can become unacceptable in the case
of high-dimensional data such as text. In this paper, we
show how such an approach can be made practical by com-
pacting the transferred models and limiting the number of
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exchanges in such a way that communication cost is dras-
ticall reduced while classification quality remains nearly
unaffected.

A preliminary version of this work has been presented
in [41]. In this article, we provide additional details for
the algorithm and a thorough experimental study of the
resulting efficiency/effectiveness tradeoffs in the context
of distributed and collaborative classification. To the best
of our knowledge, our work is the first to apply flexible
dimensionality reduction for efficient classification model
propagation and combination.

3 Distributed collaborative classification framework

We now describe Collaborative SVM (CSVM), our frame-
work for distributed execution of linear discriminative clas-
sification. The framework combines local classification,
dimensionality reduction, and model sharing, to realize
scalable collaborative classification with an excellent qual-
ity/network cost tradeoff. In this paper, we describe the
framework assuming that the local classifiers are built
using support vector machines (hence the name CSVM),
but the framework is in fact agnostic to the used local
classifiers. For example, we have also considered using
Reduced SVMs [33] for local classification (Section 4,
which increase training efficiency for large training sets
by choosing a suitable subset of the training data. The
framework is also applicable to other linear discriminative
classification approaches, e.g., Fisher’s Discriminant [25].

In CSVM, nodes performing classification are connected
in a peer-to-peer network. We assume that each peer in the
network has its own training set. The algorithm consists of
the following key steps:

— Peers form an unstructured P2P overlay.

— Every peer computes a local classification model using
its own training set.

— Peers reduce their local models, and exchange them
with a small number of selected neighbors.

— Each peer merges the received models with its own
model to construct a more powerful meta classifier,
taking reliability weights into account.

The resulting meta classifiers exhibit a much higher qual-
ity than the local ones, and can be used at each node for
classification purposes. The process is repeated periodically
to account for changes, i.e., updated classification models
in the neighboring peers, accounting for new training doc-
uments. In the following, we describe the elements of the
algorithm in detail.

Constructing the network In our framework we are given
a set of [ peers P = {p1, p2, ... p;} connected over an

unstructured P2P overlay, with each peer selecting its neigh-
bors uniformly at random. The resulting random graph net-
work topology can be formally defined as a neighborhood
relation N C P x P. We chose to establish the neighbor-
hood of each peer randomly for two reasons. First, random
connections are simple to construct and maintain, and, as
we will show in the experiments, they already lead to very
good classification results, very close to the gold standard.
Second, such overlay networks have been shown to have
advantageous properties, which are important for real-world
implementations: they can withstand flash crowds, deal with
massive node failures, and enable efficient recovery. Tech-
niques for constructing and maintaining such networks are
well studied, e.g., [28, 45, 47], and any of these techniques
can be applied to maintain the P2P infrastructure.

Note that our algorithm requires only a minimum num-
ber of neighborhood links for each peer, i.e., at least n
neighbors. This condition is also satisfied by structured P2P
topologies [13], thus CSVM can also operate on top of
structured P2P networks, without any changes. Due to the
locality of the algorithm, unlike epidemic algorithms, classi-
fication accuracy at each peer depends solely on the training
set of the peer and the training sets of its immediate neigh-
bors only (or just a subset of these neighbors). For this
reason, the total network size is orthogonal to the quality
and cost of the algorithm (per peer). More formally, for two
network graphs G1(P1, E1) and G(P2, E»), where G1 is a
sub-graph of G», all peers in P, for which all their neigh-
bors are also contained in P; will incur exactly the same
cost and quality properties, even if | P,| >> | Py].

Classification with Support Vector Machines In SVM clas-
sification, the data to be classified is assumed to be in the
form of feature vectors. For example, a feature vector of
a document might consist of the frequencies of the terms
occurring in the text, taking into account the inverse docu-
ment frequency for weighting.In the following, we focus on
binary classification, i.e., the classifier needs to distinguish
between two classes of items, usually labeled positive and
negative instances. There exist various techniques to reduce
multi-class classification to a set of binary classification
problems that can be solved separately [2].

SVMs, as all linear discriminative algorithms, construct
a hyperplane as classification model, described by the equa-
tion w-x+b = 0, where w is the normal vector and b the bias
of the hyperplane. The constructed hyperplane separates the
set of positive training examples from the set of negative
examples with maximum margin. Hyperplane construction
requires solving a quadratic optimization problem whose
empirical performance is somewhere between quadratic and
cubic in the number of training documents [11]. Linear ker-
nel SVMs have been shown to perform very well for text
classification [21]. Given an SVM model m, for classifying
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a new, previously unseen item e with feature vector e, we
merely need to test whether this vector lies on the positive
side or the negative side of the separating hyperplane. This
decision simply requires computing the scalar product of w
and e, and results in a classification score s (e, m), which can
be positive or negative, and corresponds to our confidence
of e being positive resp. negative.

Model propagation in the network Each peer p; € P main-
tains its own item collection C; and training set 7; C Cj,
with |T;| << |Cj|]. A peer p; with a set of neighbors
N(p;) builds and propagates its local SVM model m; as
follows. First, it uses its training set 7; to construct m;. It
then selects n neighbors uniformly at random from N(p;),
and requests their local classification models. Using these
models, it computes a new meta model, which can be
used for classifying its local documents. This process is
repeated periodically, to take into consideration new train-
ing documents accumulated at the collaborating peers. This
technique for propagating models can be considered as a
form of gossiping.

Notice that the exploited propagation algorithm does not
have epidemic characteristics: each peer sends the model
that corresponds only to its own training data, rather than
the meta-model constructed by the aggregation of the mod-
els from its neighborhood. We will verify experimentally on
real-world collections that the quality of the proposed prop-
agation technique is already very close to the quality that
could be achieved by a (hypothetical) centralized algorithm
that has access to the training data of all peers (the gold
standard) (cf. Section 4.6).

Any alternative distributed algorithm, including epi-
demic protocols, cannot be expected to perform better than
this gold standard. Therefore, epidemic model propagation
could not offer any substantial benefit in terms of quality.
In addition, it would have the following adverse effects on
the algorithm’s performance: (a) it would introduce conver-
gence requirements (in contrast, our method just requires a
single propagation step: each peer constructs its meta-model
based only on its own training set and the models of its
one-hop neighbors), (b) it would increase the network cost
of the algorithm by exchanging models more frequently (in
an epidemic style), and, finally, (c) supporting a reasonable
weighting scheme for the meta-model construction would
require including additional information into the exchanged
messages for detecting network cycles, which would further
increase the network cost.

Dimensionality reduction The propagation of the SVM
models incurs a network cost for the participating peers.
This cost is determined by the dimensionality of the models,
i.e., the size of the normal vector w of each model. As each
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feature introduces an additional dimension in w, these fea-
ture vectors can become very large and their transmission
costly. This is particularly an issue for the case of text classi-
fication, where the number of features equals to the number
of terms. Our approach therefore relies on dimensionality
reduction to keep the network cost low.

In centralized classifiers, feature selection and dimen-
sionality reduction techniques have been proposed to
address computational concerns for high-dimensional data.
In this work, we exploit feature selection in a novel context,
to drastically reduce the network cost incurred during model
exchange. There is a plethora of proposed feature selec-
tion techniques, such as ¢ regularization, and [26, 39, 51].
In [39], Mladenic et al. show that components in the normal
vector w with high absolute values are the most impor-
tant ones for the classification models, and derive a pruning
method for normal vectors of SVMs relying on this obser-
vation. For our work, we choose to use this latter approach,
because it incurs very low computational cost, although any
of the other approaches is equally applicable. To this end,
each peer determines its top-k normal vector dimensions
with highest absolute values, and discards the remaining
dimensions. In the following, we denote the reduced nor-
mal vector of peer p; as w’;. Clearly, the value of parameter
k is important for the performance of CSVM, and, in com-
bination with the number of neighbors n, enables peers to
fine-tune the efficiency/quality tradeoff. In Section 4 we
study the influence of k on the network load and the clas-
sification accuracy, and show that the exploitation of highly
reduced model representations still yields highly accurate
meta models. The evaluation shows that the approach incurs
negligible quality loss, with a very low network cost.

Meta model construction We now describe how a peer p;
combines the set of models received from its neighbors and
its own model into a single meta model meta;. For clarity,
we first explain how the meta model is constructed assum-
ing that peers exchange unreduced classification models,
and we then consider the case of exchanging reduced mod-
els. A local linear discriminative model m contains the
hyperplane representation, i.e., a tuple < w,b >. When
transmitting m, a vector 1 is added which maps the dimen-
sions of w to features, i.e., the ith component of 1 relates the
ith component of w to its corresponding feature. This elim-
inates the need to maintain a shared feature enumeration.
Let R(p;) denote the set of peers that have sent the
reduced model to p;, and M; = {m;} U {m; : p; € R(p;)}
denote the set of all models available at peer p;, i.e., its
own model and the models requested from its neighbors.
To classify an item e with feature vector e, a peer com-
bines classification scores s(e, m ;) of the individual models
inmj € M; to a meta score. For this combination, each
model m ; is assigned a weight r; according to the respective
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model’s reliability. In our experiments (see Section 4) we
use the respective training set size as reliability weight, but
more complex weights could take into account other factors
such as trust [30]. Assuming that the reliability weights are
normalized, the meta score is computed as s(e, meta;) =
7 Lo e T - S m ).

Merging the individual scores is equivalent to comput-
ing a single hyperplane Wy,erq; © X + Dipera;, Where Wyerq,
is the combined normal vector and by, the combined
bias. The combined normal vector is computed as W1, =
ﬁ ijeM,- rj - wj, where w; is the normal vector of
model m; (taking the mapping defined by I into account).
Note that > denotes the sum of the corresponding vectors
{wj : mj € M;}, respecting the mapping of features to vec-
tor dimensions defined by 1. The combined bias is obtained
similarly as bperq; = ﬁ ijeMi r; - b;. Combining all
received models to a single meta model per peer is desir-
able for efficiency reasons. In particular, the computational
cost for classifying an item e with feature vector e, using
|M;| different models is O (|M;| x |e|), while the cost for
evaluating it using the meta classifier, as we do, is only
O(lel).

Note here that the meta-classifier obtained from the
above steps is not necessarily identical to a centralized clas-
sifier, computed using the union of the training data of all
peers [12]. However, as demonstrated by our experiments,
and also pointed out by Caragea et al. [12], this difference is
usually very small. The goal of the paper is an improvement
of classification quality through model sharing in P2P envi-
ronments while minimizing costs at the same time. To this
end, it is not necessary to produce a single global solution.

Since our goal is not to find a global solution but to
improve classification through model sharing, we also do
not need any special handling for peer churn. For most
application scenarios (collaborative spam filtering being a
prime example), a peer’s disconnection from the network
does not invalidate the value of its classification model that
is already sent at its neighbors; the model is still valuable,
since it represents a (potentially large) real training set. Sim-
ilarly, if a new peer joins the network, it can exchange its
local model with its newly acquired neighbors. As such, the
model does not need to be “deleted” from the neighboring
peers.

From the exchanged classification models, some infor-
mation about the word distribution of the user’s documents
can be inferred. The exchange of a certain amount of user
information is unavoidable for collaboration. However the
models can be seen as a very compressed statistical repre-
sentation of the data, and, thus, reveal much less information
than the complete training data, or the support vectors.

As explained, peers in our system reduce the mod-
els to save network resources. In practice, each peer only
transmits the reduced normal vector w’, the corresponding

encodings I, and bias b. The actual meta model hyperplane
constructed at each peer p; is W, = ﬁ Zm_,-eM,» rj -
w,. Bias merging is not affected by dimensionality reduc-
tion. The classification process remains the same as for the

unreduced case.

Cost model CSVM belongs to the class of local algorithms,
since the communication cost for each peer to build the
meta models is independent of the size of the network. This
cost depends on the number of neighbors n = |R(p;)| of
each peer p;, and on k, the number of the top model com-
ponents exchanged. The network cost for constructing each
meta model is Cy,erq = O((n X k), and the total commu-
nication cost for one period in a network of | P| peers is
O(|P| x n x k). In Section 4, we discuss how to optimize
the parameters k and n for a given network cost constraint
to maximize the accuracy of the meta classifier.

4 Experimental evaluation

The experimental evaluation had the following objectives:

— The evaluation of scalability and effectiveness of
CSVM in dependence of its system parameters, i.e.,
number of neighbors per peer (Section 4.2), and number
of dimensions per model (Section 4.3). This includes a
discussion on the parameter tuning for the algorithm,
i.e., the influence of optimizing the parameter selection
for a given network cost budget (Section 4.4).

— The validation of CSVM performance characteristics on
different real-world datasets, and using different sizes
of training data per peer (Section 4.5).

— The comparison of CSVM with the state-of-the-
art in distributed and collaborative classification
(Section 4.6).

We start by describing the experimental setup.
4.1 Experimental setup

As described in Section 3, CSVM can employ different
linear discriminative classifiers for computing the local
models. In our experiments, we tested CSVM using stan-
dard SVMs (denoted simply as CSVM) as well as Reduced
SVM classifiers [33] (denoted as CRSVM). To investi-
gate the benefits of collaborative classification, we com-
pared these two CSVM variants with their non-collaborative
counterparts (denoted as SVM and RSVM) where each
peer uses only its local classifier built solely on its own
training set. As a quality gold standard, we used a non-
distributed SVM classification (CENTR), computed on the
union of the training sets of all peers. We also compared
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our approach with the state-of-the-art P2P classifier, Cas-
cade RSVM [3] (CASC). As explained in Section 2, peers
in CASC exchange support vectors that are computed
using Reduced SVM, instead of exchanging the hyper-
plane representations. Finally, to examine the quality of
our dimensionality reduction, we compared our approach
with [6] (denoted henceforth as HASH), a state-of-the-
art non-distributed approach to reduce the feature space
for SVM classification. We examined the performance of
two HASH variants, the standard one which uses standard
SVM for computing the classifiers, and a second one using
RSVM (RHASH). All implemented algorithms employ the
LIBSVM implementations of SVM and RSVM [34].

In order to analyze the effect of the system configu-
ration on the efficiency and effectiveness of CSVM, we
conducted a wide range of experiments, varying the num-
ber of collaborating neighbors, and the dimensionality of
the shared models. All experiments were repeated with dif-
ferent training set sizes per peer, and with four different
datasets, to confirm the applicability of CSVM to distinct
usage scenarios.

In the following, we report experiments for a network
of 100 peers built over an unstructured random graph net-
work [28]. The main reason for limiting the network size to
100 peers was to enable sufficiently large non-overlapping
training and testing subsets for all real-world datasets. It is
important to note, however, that the algorithm’s accuracy
and efficiency for the participating peers is independent of
both network size and network topology, since the algo-
rithm does not employ epidemic propagation. As discussed
in Section 3, accuracy and efficiency depend solely on the
number of collaborating neighbors per peer (a subset of
the physical neighbors at the P2P overlay), and the dimen-
sionality of the reduced models, both of which which are
independent of the network characteristics. Therefore, all
presented results also apply to larger and differently formed
P2P networks, including structured, DHT-based networks.

Datasets The experiments were conducted on four stan-
dard, Web-based datasets [15, 34]:

revl: The Reuters Corpus Volume 1 dataset consists of
approximately 700,000 news feed articles, and
contains about 47,000 features.

The TREC 2007 spam corpus, consisting of
75,000 emails, manually assessed as spam or
ham. The dataset has a total of 395,000 features.
The 20 Newsgroups dataset consists of approxi-
mately 20,000 newsgroup articles with 1,3 mil-
lion features.

Approximately 72,000 UseNet articles from four
discussion groups in the topics of ‘simulated
auto racing’, ‘simulated aviation’, ‘real autos’,

trec:

news20:

realsim:
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and ‘real aviation’. The classification objective
is to separate the documents about simulation
from the others. This dataset has a total of 21,000
features.

For the rcvl, news20, and realism datasets, we used the
standard features and ground truth for binary classification
available from [34]. For the trec collection we used term-
based TF-IDF features, and the user assessments in [15]
as ground truth. The results were mostly consistent across
datasets. Therefore, and to avoid repetition, in most cases
we report detailed results for rcvl which is the largest
dataset, and summarize the results for the other collections,
emphasising the observed differences.

Each dataset was split into a training set and a disjoint
test set. We assigned to each peer a local training collection
using the documents in the training set. Unless otherwise
noted, each local training collection consisted of 25 positive
and 25 negative randomly selected documents. To increase
the reliability of our quality assessments, all peers were
evaluated on the full test set; note that this does not influ-
ence the integrity of the evaluation since the peers do not
exchange any information on the test data.

Evaluation measures As efficiency measures, we used the
network cost per peer as well as the processing cost required
for classifying each document. We evaluated the effective-
ness using standard classification quality measures: (a) the
Receiver Operating Characteristic (ROC) Curve [24] as well
as its aggregate measure, the Area Under the ROC Curve
(AUC), and (b) the Precision-Recall Break Even Point
(BEP). AUC and BEP values close to 1 indicate highly accu-
rate classifiers, whereas values close to O correspond to low
classification quality. ROC curves are used for visualizing
the performance of binary classifiers, and show the ratio of
misclassified in relation to the ratio of correctly classified
items. These measures are widely used in the literature for
evaluating binary classification scenarios, e.g., [9, 16, 17,
22, 27].

4.2 Influence of the number of neighbors

We first examine how the number of neighbors influences
the performance of CSVM. Here, number of neighbors
refers to the number of peers each peer exchanges models
with, i.e., the cardinality of R(-) (cf. Section 3).

Quality Figure la and b show the AUC and BEP measures,
respectively, for CSVM and CRSVM configured with dif-
ferent neighborhood sizes. The results are displayed for the
rcvl collection, with the number of dimensions set to 500.
For comparison, we also include the performance of the
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non-collaborative approaches (SVM and RSVM). For illus-
tration purposes, SVM and RSVM are plotted as horizontal
lines; the number of neighbors for both algorithms is 0 by
definition, though.

Both CSVM and CRSVM clearly outperform the cor-
responding non-collaborative approaches. As expected, the
benefit of collaboration increases with the neighborhood
size. While, for instance, with just one neighbor per peer
CSVM and CRSVM perform only marginally better than
their corresponding non-collaborative counterparts, with 8
neighbors, we can already observe an improvement of more
than 7 % compared to the corresponding baselines. We also
observe that the approaches using standard SVM (i.e., SVM
and CSVM) achieve higher quality than the ones employing
RSVM. The reason is that RSVM trades classification qual-
ity for computational efficiency, resulting in less accurate
classifiers than standard SVM.

Note that CSVM and CRSVM achieve significant
improvements compared to the standard SVMs, even for
small neighborhood sizes. In particular, CRSVM with just 4
neighbors yields a performance improvement of more than
10 % compared to RSVM. Similarly, CSVM with 4 neigh-
bors achieves a performance increase of more than 5 %
compared to SVM. Adding more neighbors per peer further
improves classification quality at a slower rate.

Fig. 2 ROC curves for CSVM:

The ROC curve for the CSVM experiments (Fig. 2a)
reveals further insights on the strengths of CSVM. The
improvement of both algorithms is particularly apparent on
the left hand side of the curves, i.e., with false positive rates
less than 0.05. This is generally the most interesting area
for classification scenarios such as collaborative spam filter-
ing, which involve a high cost for false positives. The ROC
curves also confirm our previous observation that small
neighborhood sizes are sufficient for achieving significant
improvements; for example, the ROC curve corresponding
to 8 neighbors already closely approximates the one of 32
neighbors. Similar results apply to CRSVM (see Fig. 3a).

Efficiency In Fig. 1c, we show how the network cost devel-
ops when increasing the number of neighbors. Note that the
corresponding network cost for non-collaborative SVM and
RSVM is 0, since these do not employ model exchange. As
expected (cf. Section 3), the network cost of both CSVM
and CRSVM is linear with the number of neighbors. Due
to the compactness of the SVM models after dimensional-
ity reduction, the network cost per peer is well-manageable,
even for deployment over mobile networks. For example,
the total network cost per peer for the setup with 32 neigh-
bors (the maximum value considered) is only 250 Kbytes
for CSVM and only 170 Kbytes for CRSVM. The lower
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Fig.3 ROC curves for
CRSVM: a Varying the number

o)

(o2

of neighbors, b Varying the
number of dimensions

True Positive rate

True Positive rate

CRSVM:1 —— 8
2

16 ——
4 32 oo

network cost of CRSVM compared to CSVM is due to
a specific property of RSVM: it generates more compact
models than standard SVM, which, in some instances, have
even less than the maximum allowed number of dimensions,
i.e., less than 500 in our configuration. Therefore, the net-
work cost of CRSVM is sometimes even lower than the
expected cost.

With respect to computational complexity, all compared
algorithms require the same time for classifying a docu-
ment, approximately 0.01 milliseconds on a single AMD
2.7 GHz processor. Classification cost is linear to the num-
ber of non-zero components of the document vector, i.e., the
number of distinct terms. Therefore, the number of neigh-
bors per peer, as well as the number of dimensions, does not
influence the computational complexity of CSVM. Classifi-
cation time is negligible, making the algorithm suitable for
online classification. The periodic merging of the models
also takes a negligible amount of time, less than 10 millisec-
onds per peer, even for the case where all dimensions are
kept.

The qualitative results of the experiments on the other
datasets are similar, as can be seen from the AUC values
shown in Fig. 4a. Summarizing, the first set of experiments
shows that increasing the number of neighbors leads to bet-
ter classification quality, and that a small number of neigh-
bors already yields substantial improvements compared to

Fig. 4 Influence of a Number

0 01 02 03 04 05 0.6 0.7 08 09 1
False Positive rate

0O 01 02 03 04 05 0.6 0.7 08 09 1
False Positive rate

RSVM - CRSVM:50 —— 500 RSVM -
100 1000 ——
200 - ALL -----

the baselines, with negligible network and computational
overhead.

4.3 Influence of the number of dimensions

In our second experimental series we examined the influ-
ence of the number of model dimensions on the perfor-
mance of CSVM and CRSVM. Figure 5a and b present the
observed AUC resp. BEP values for different numbers of
dimensions (ranging from 50 to all dimensions). The results
are shown for the rcv1 collection, with 8 neighbors per peer.
As before, we include the non-collaborative counterparts for
comparison.

Quality As expected, increasing the dimensionality has a
positive effect on the classification quality. For instance,
increasing from 50 to 200 dimensions increases the AUC
value from 0.914 to 0.954. Also, similar to the case of
increasing the neighborhood size, the number of dimensions
can be kept low: both CSVM and CRSVM yield already
substantial benefits with 500 dimensions, achieving a clas-
sification quality almost equal to the unreduced models
(denoted with ALL on the X axis). The ROC curves further
confirm these observations (Fig. 2b and b).

The results on the other three datasets are summarized
in Fig. 4b. An interesting observation is that the news20
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collection benefits more from the increase in the number
of dimensions than the other datasets. In particular, we
observe substantial quality increase in the news20 results,
even after increasing from 1,000 to all dimensions; for the
other datasets, this change yields just a very small additional
performance. This is due to the larger number of features
contained in news20, namely 1.3 million compared to less
than 400,000 for the other datasets.

Efficiency We observe that the network cost grows linearly
with the number of model dimensions (Fig. 5c). For the
configuration with 500 dimensions, which yields a near-
optimal classification, the network cost reaches a maximum
of 62 Kbytes per peer. Interestingly, the cost for the CRSVM
approach reaches a plateau after 500 dimensions. This is
because in most cases, RSVM generates local models of
less than 500 dimensions per peer. Therefore, the dimension
limit does not lead to further model reduction. This is also
the reason why CRSVM with 500 dimensions achieves the
same quality as CRSVM with unreduced models.

As explained in Section 4.2, computational complexity
is orthogonal to the number of neighbors and the num-
ber of model dimensions; therefore, the classification time
of CRSVM is equal to the one of the standard, non-
collaborative SVM algorithm.

4.4 Parameter tuning

As demonstrated in the previous experiments, the accuracy
of the algorithm is controlled by the number of collaborating
neighbors and model dimensions. These parameters can be
tuned to optimize classification accuracy for a given, user-
or system-defined, network cost quota.

In order to explore the optimal combination of num-
ber of neighbors and dimensions we tested both algorithms
with different quotas. These were expressed as the maxi-
mum transfer volume per peer participating in the network
(including both incoming and outgoing transfer volume).
For each quota, we executed all possible setups—combi-
nations of the number of neighbors and dimensions—and

identified the combination resulting in the maximum AUC
value. Figure 6 summarizes the experimental results for
the four collections. The X axis depicts the neighborhood
size whereas Y depicts the AUC measure. We see that the
AUC measure is fairly stable in the area between 5 and 20
neighbors per peer, having a maximum difference of less
than 0.02. In particular, a default value of 8 neighbors per
peer provides already near-optimal results for all examined
configurations (more than 99 % of the optimal AUC). Inter-
estingly, the function of AUC with respect to the two control
parameters is always convex, which can facilitate the effi-
cient optimization of the parameters using, for instance,
simple hill climbing techniques. Our future work will focus
on enabling the peers to adapt dynamically and efficiently
to their network limitations for maximizing the classifier
performance.

4.5 Influence of training data characteristics

In the previous experiments we have considered scenarios
where the training data is assigned uniformly to the peers.
However, CSVM and CRSVM can also be applied to P2P
networks with heterogeneous training set sizes, correspond-
ing, for instance, to scenarios where the effort put into creat-
ing local training sets varies strongly between users. In fact,
these are precisely the setups where the non-collaborative
SVM and RSVM algorithms fail, due to insufficient training
data on some peers. Therefore, we examined two alterna-
tive distributions characterizing the number of documents
per peer, (a) Poisson, and, (b) Zipfian distribution. To allow
for comparison with the previous results we kept the aver-
age number of documents per peer at 50. As before, we
conducted two series of experiments, by varying either the
number of neighbors or the number of dimensions. (b)
Zipfian distribution. To allow for comparison with the pre-
vious results we kept the average number of documents per
peer at 50. As before, we conducted two series of exper-
iments, by varying either the number of neighbors or the
number of dimensions.
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Figure 7 presents the AUC measures for the four datasets,
and the discussed distributions. We see that the AUC val-
ues for each dataset are practically equal, independent of the
distribution of the training set. This means that the quality
of CSVM stays unaffected of the distribution of the training
sets. Even for the Zipf distribution, where most of the peers
have a very small number of training data, CSVM still yields
practically the same results by combining weighed models
from neighboring peers. The same quantitative results were
achieved with CRSVM, and also with respect to the BEP
measure.

With respect to the two non-collaborative algorithms,
SVM and RSVM, we observe that the training set distri-
bution has a strong effect on the classification quality (cf.
Table 1). The classification quality of the two baselines
clearly degrades when the training set sizes follow the Zipf

Fig. 7 Influence of training set

distribution, as many peers end up with small training sets.
Note that the Zipf distribution is ubiquitous for content
on the Internet [1]; it is therefore very important for any
classification algorithm to be able to cope with it.

4.6 Comparison with other algorithms

In this section, we present the results of our comparison with
the state-of-the-art in distributed and collaborative classifi-
cation. We compared CSVM and CRSVM with two other
collaborative classification algorithms, (a) CASC, the state-
of-the-art in distributed classification, (b) HASH/RHASH,
which perform dimensionality reduction based on hashing.

We compared all algorithms with respect to their
cost/quality ratio, i.e., which quality can be achieved with
a certain network cost budget. The CSVM and CRSVM
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Table 1 Classification quality
for different training set Training set Quality (AUC)
distributions
Dataset Distr. SVM RSVM CSVM CRSVM
revl zipf 0.879 0.669 0.965 0.875
poisson 0911 0.706 0.965 0.901
uniform 0.907 0.730 0.966 0.897
trec zipf 0.932 0.677 0.990 0.951
poisson 0.956 0.738 0.990 0.945
uniform 0.959 0.813 0.990 0.946
news20 zipf 0.793 0.608 0.849 0.733
poisson 0.816 0.622 0.848 0.748
uniform 0.817 0.650 0.850 0.734
realsim zipf 0.880 0.675 0.958 0.883
poisson 0.901 0.718 0.961 0.884
uniform 0.907 0.721 0.960 0.903

algorithms were initialized with 8 neighbors per peer and
d dimensions per model, with 50 < d < ALL. Since
the number of neighbors was fixed, the affordable number
of dimensions for each network budget was precomputed
according to our cost model (see Section 3). HASH and
RHASH were configured to yield the same network cost
as the CSVM/CRSVM algorithms. This involved setting
the number of dimensions (the HASH buckets) to d, and
the neighborhood size to 16 per peer (HASH has half the
transmission cost per dimension compared to CSVM). For
CASC, we tested all (reasonable) possible configurations
and chose the ones performing best for a given network
budget. Note that CASC does not allow for preselecting

or upper-bounding the network cost, and therefore the cost
ranges of the compared algorithms do not completely over-
lap. For example, for the rcvl dataset, there exists no
possible configuration of CASC with a network cost less
than 10 Kbytes per peer.

Comparison results Figure 8a—d depict the AUC measures
in correlation to the network requirements for all compared
algorithms. As a gold standard, we also show the quality of
non-distributed SVM classification (CENTR), computed on
the union of the training sets of all peers. The CENTR per-
formance indicates the upper bound of quality a distributed
SVM algorithm can achieve. The comparison with this gold
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standard allows us to show the respective quality loss of
the evaluted distributed algorithms. Notice that the CENTR
classifier is only theoretical; as we explain in the introduc-
tion, it has important scalability and privacy issues for large
P2P networks.

We see that CSVM significantly outperforms all other
distributed algorithms. For three of the datasets, it closely
approximates the quality of CENTR, with very small net-
work cost. The only exception is the news20 dataset, which
is challenging for all distributed algorithms. This can be
explained by the characteristics of the news20 classification
task: the classifier needs to identify messages from 10 news-
groups as positive, and from 10 other ones as negative. As
such, both the positive and negative class consist of a high
variety of topics (e.g., ‘cars’, ‘sports’, ‘politics’, ‘religion’).
The available local training documents are therefore not suf-
ficient to capture this variety, leading to local classifiers of
low quality. Still, CSVM helps increasing the quality, and
achieves the highest AUC of the distributed approaches.

CRSVM is inferior to CSVM, but still outperforms the
HASH and CASC algorithms in its cost range. We expect
CRSVM to show its strengths only with very large local
training sets. Another limitation of CRSVM and of all the
RSVM-based algorithms also becomes apparent from these
results: the underlying RSVM already trades classifier accu-
racy for efficiency, limiting the possibility of a fine-grained
control of the desired cost/quality trade-off.

It is also interesting to consider the point where CASC
reaches the maximum quality of the considered CSVM
configuration, i.e., more neighbors would be required for
further improving the CSVM quality. Table 2 presents the
network cost of the algorithms. We observe that CASC
incurs up to an order of magnitude higher cost than CSVM
for achieving the same classification quality. The other com-
pared algorithms are not depicted in the table as they cannot
achieve a quality level comparable to CSVM.

5 Conclusions and future work

In this paper, we have presented CSVM, a collaborative
classification algorithm built on top of a P2P network.

Table 2 Network cost of CSVM and CASC for achieving an equal
classification quality

Dataset Quality Network cost per peer (Kbytes)
(AUC)
CSVM CASC
revl 0.971 237 2342
trec 0.992 390 1400
news20 0.895 2223 5157
realsim 0.966 224 2006

@ Springer

Each participating node merges SVM classifiers trained
locally on a small number of neighboring nodes into more
accurate meta classifiers. To reduce network cost, we have
also considered a variant of the algorithm that enables
peers to exchange and merge reduced SVM models. Our
experimental evaluation provided a systematic study of sys-
tem parameters, i.e., number of collaborating neighbors
and dimensionality of models. Results confirm that CSVM
substantially outperforms state-of-the-art collaborative clas-
sification techniques while keeping network costs an order
of magnitude lower. Our experiments further demonstrate
that our approach is robust with respect to the choice of
neighbors in the P2P network; especially a random choice
of neighbors results in substantial improvements of the
classification quality—both in comparison to single peer
solutions and in comparison to state-of-the-art algorithms
for distributed classification. Our approach offers the addi-
tional advantage that network load can be controlled in a
precise and flexible way, allowing for an optimal utilization
of network resources.

The proposed algorithm is simple to implement, deploy,
and configure over existing P2P overlays—both structured
and unstructured. Possible application scenarios, such as
collaborative spam filtering via mail-client plugins or col-
laborative detection of spoof websites via browser plugins,
can be implemented mostly using off-the-shelf and open-
source components and protocols. Furthermore, other linear
discriminative classifiers, like Fisher’s discriminant, can
be used in place of support vector machines, to address
special requirements. We consider the simplicity and exten-
sibility of CSVM as an important asset of the approach,
since simple ideas have a higher chance to be applied in
practice.

While default configurations for CSVM provide already
very good results, in our future work, we aim to dynam-
ically tune the system parameters to achieve maximum
accuracy for given network constraints. To this end, we plan
to apply mutual evaluation of propagated meta models of
the peers, and convex optimization techniques on the out-
comes. We will also investigate how malicious users can
be identified and isolated from the network by evaluating
classifiers from collaborating users within trust networks.
Finally, we aim to apply more enhanced propagation tech-
niques, e.g., sharing of meta models, neighbor selection
strategies, and to combine our techniques with efficient
transmission of additional, tuning-related information such
as training set characteristics and inter-peer cross-evaluation
results.
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