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Abstract

Distributed Hash Tables (DHTs) are very efficient for
querying based on key lookups, if only a small number of
keys has to be registered by each individual peer. However,
building huge term indexes, as required for IR-style keyword
search, are impractical with plain DHTs. Due to the large
sizes of document term vocabularies, joining peers cause
huge amounts of key inserts, and subsequently large num-
bers of index maintenance messages. Thus, the key to ex-
ploiting DHTs for distributed information retrieval is to re-
duce index maintenance. We show that this can be achieved
by combining DHTs with peer clustering. Peers are first
clustered into communities, each of the communities having
a representative super-peer. Then all occurrences of a term
in a community are published to the global DHT in a batch
by the representative super-peer. Our evaluation shows that
this reduces index maintenance cost by an order of magni-
tude, while still keeping a complete and correct term index
for query processing.

1 Introduction

The introduction of distributed hash tables (DHTs) for
the organization and indexing of data in peer-to-peer net-
works has led to a boost in scalability, robustness, and ef-
ficiency [23, 21]. On the one hand, in contrast to simple
flooding approaches all network content is visible from ev-
ery peer. On the other hand, DHT algorithms efficiently
distribute the lookup process over all peers. Moreover,
effective schemes for load balancing [9] have also ad-
dressed problems with imbalances introduced, e.g., by Zipf-
distributed query load or by different capabilities of peers.

However, using DHTsS for fulltext indexing poses severe
problems. Even after traditional preprocessing steps like re-
moving stopwords and stemming, documents still feature a
large amount of different keywords that need to be indexed.
All new content of a joining or updated peer has to be pub-
lished in the DHT. In fact, since in DHTs a hashing function
decides which peer is responsible for which terms, usually

a considerable number of peers holding some part of the
DHT have to be contacted to fully publish all the informa-
tion about each peer.

In this paper we present a novel approach to realize
efficient peer-to-peer document retrieval, by combining a
super-peer architecture with a DHT. We organize peers into
groups, each of them being represented by a super-peer for
publishing the group’s information to a single global DHT
used for query processing. Each of the peers independently
joins a group (either randomly, or based on its collection),
and submits its index to the representative super peer for
the cluster. The group representatives efficiently batch this
information and periodically forward aggregated publish-
ing/update messages to the DHT. Hence the number of the
required DHT lookups for publishing and the total number
of messages is significantly reduced. Indeed, our evaluation
shows that the proposed approach enables message savings
of as much as one order of magnitude compared to a plain
DHT, regarding number of messages as well as total trans-
fer volume. Thus, the process of maintaining the distributed
keyword index is significantly less expensive compared to
traditional DHTs, making complete term indexing feasible.

While peer grouping alone already offers significant per-
formance improvements, we can achieve further gains by
introducing a distributed clustering scheme, such that peers
in each individual group have similar contents. This reduces
the total number of the words needed to index in each clus-
ter and additionally decreases DHT lookups needed for pub-
lishing and the total number of messages for maintaining the
DHT.

The paper is structured as follows. After reviewing the
related work on the area, we present the basic algorithm and
building blocks of our topology in Section 3. We then in-
troduce our distributed clustering scheme, targeting to even
less network overhead for maintaining the index. Section 5
contains the results of our experimental evaluation. We con-
clude with a discussion and future work.



2 Related Work

The problem of peer-to-peer indexing of large document
collections has been recognized already early. The area of
peer-to-peer information retrieval has first focused on dis-
tributing retrieval in unstructured networks, using approxi-
mated collection-wide information. PlanetP [6] is one of the
first such systems. It uses gossiping to distribute peer con-
tent summaries, represented by bloom filters. From these
summaries each peer computes inverted peer frequencies,
which are used to rank sources for a given query in a similar
fashion as in GIOSS [10], but now without a central coor-
dinating instance. Due to the gossiping of collection-wide
information, such approaches exhibit only limited scalabil-
ity.

Since DHT infrastructures offer a lot of efficiency and
scalability over unstructured networks, the idea of opening
up DHTs also for IR-style retrieval is appealing. However,
Loo et al. [12] have shown that a pure DHT solution does
not scale for fulltext indexing, because index maintenance
becomes too expensive. ALVIS [20] increases DHT scala-
bility by indexing per peer only those keywords most sig-
nificant for describing each document in its collection, thus
trading the index’ completeness for improved scalability.
As it is still a difficult problem to decide locally which terms
should be considered most significant with respect to the
global collection, [22] proposes a similar approach, PNear,
where the terms to be indexed are chosen randomly from the
peers’ abstracts. Even with this simplification already good
performance benefits can be obtained, but again at the price
of index incompleteness. The Adlib approach [8] estab-
lishes a two-tier structure, where a first tier divides the doc-
uments into independent, equal-sized partitions, so-called
domains. Within each domain, nodes build a distributed
index over the content stored which then is offered in the
second tier for querying. By tuning the size and number of
domains index maintenance can be traded-off against query
efficiency.

Recently the concept of hierarchical DHTs has been in-
troduced to foster efficient bandwidth utilization and a bet-
ter adaptation to the underlying physical network, see e.g.,
[7, 24]. Especially the latter point is most promising for
employing hierarchical DHTs also for information retrieval
tasks in peer-to-peer networks. However, the current pro-
posals for hierarchical DHTs are still less effective in mes-
sages compared to flat DHTs [24].

Super-peer-based algorithms have also been proposed in
this area. [5] proposes to maintain collection-wide infor-
mation as well as routing tables at designated super-peers,
called infobeacons. [2] collect query statistics at super-peers
to facilitate efficient keyword query processing. However,
querying does still not scale as good as with DHTs (i.e.,
not logarithmically). To our knowledge, the combination of

DHT and super-peers for P2P information retrieval has not
been proposed yet.

3 Basic Algorithm

Let us now present our basic algorithm. Figure 1 illus-
trates our approach: all peers first join a global Distributed
Hash Table, however, without publishing any of their con-
tents. Then each of them autonomously joins a group by
attaching to a suitable super-peer, which takes over the re-
sponsibility of publishing the entire group’s keywords to the
DHT and keeping it updated. Each peer updates only the
super-peer of its group with the inverted term index of its
collection. In turn, the super-peers periodically update the
DHT by publishing the inverted indices of their peers’ col-
lections. Please note that the super-peers indeed post the
original indices as received from their group peers, not only
an aggregated inverted index for the group. Thus, a com-
plete index is still maintained at the DHT, and the query
routing process does not involve the super-peers (cf. 3.2).

Figure 1. Network Overview:Super-peers are
gray-shaded

Peer inverted index: For full-text indexing, peers locally
extract the inverted index for their collection: for each term,
the occurrences in the peer are counted (peer frequency),
after all terms have been stemmed and stopwords have been



removed as usual. The maximum peer frequency (the fre-
quency of the most frequent term in each peer) can also be
determined for assessing how discriminating each term is
with respect to the local collection. Both peer and max-
imum peer frequency are needed for the collection selec-
tion strategy during query evaluation. Unlike document-
granularity meta data, meta-data on peer-granularity level
is compact and efficient to exchange in a distributed system,
especially for full-text indexing scenarios. While it may re-
sult in less precision in query execution, it provides a good
balance between precision and resource requirements [4].

DHT index: The inverted index of relevant peers for each
term is built using a Distributed Hash Table, including in-
dex information for all peers in the network at any given
moment, not only the super-peers. New terms to be pub-
lished are automatically mapped to peers by the DHT using
a hash function. For each term, the responsible peer in the
DHT then keeps a list of all relevant peers and their peer
scores: the peer frequency (PF), and the maximum peer fre-
quency for each peer (Max PF)(see table 1). In Section 3.1
we explain in detail how this table is built and maintained;
Section 3.2 shows how this information is used to evaluate
queries.

Keyword | Peer:IP PF | Max PF | Super-peer:
Address IP Address

Tennis Pll ZIPU 14 43 P221P2
P]IIP] 35 57 P4IIP4
P3 : IP3 32 64 P4 : 1P4

Cream P321P3 34 64 P4I]P4

Table 1. Logical Top DHT Routing Table

In our approach, any DHT implementation can be used,
since it only requires the generic functionality of all DHT
overlays. For our evaluation, we used Chord [23] as DHT
infrastructure. However, in the algorithm description we
just refer to the generic DHT insert/lookup functionality and
abstract from implementation details .

3.1 Peers Lifecycle

Let us now take a closer look at the lifecycle of the peers
in the network.

Initialization: The first task of any new peer is to join the
DHT, which is facilitated by using the DHT’s protocol. The
joining peer then needs to decide whether it should serve
as super-peer or just join as normal peer. Unlike previous
super-peer systems (e.g., [17]), our system does not require

the super-peers to be especially powerful or have a very fast
connection. A long up-time of super-peers is also not re-
quired, but reduces the number of maintenance messages
needed. As the size of its peer group can be individually set
by each super-peer, the additional workload of super-peers
is adaptable.

In summary, a joining peer can either become a super-
peer and create a new group, or join an existing group. The
decision for this can be made by each peer independently,
for instance based on the desired ratio of peers and super-
peers, which in turn determines the probability of each in-
dividual peer to serve as super-peer Pgsp. Each joining peer
then draws a random number and can decide based on Pgp
whether it becomes a super-peer or a normal peer. In the
first case, it publishes its contents to the DHT directly, and
awaits other peers to join its peer group. In the second case,
the peer needs to find a super-peer that still accepts more
connections. Our approach implements this by the peer run-
ning a random query on the DHT, in order to discover some
super-peers (in the case of Chord, which typically has an
id ring from 0 to 2!, the random query can for example
be a random number on this range). The query will return
a peer responsible for holding the respective hash value,
which will be in turn queried for all the super-peers it is
aware of (i.e. that have published information in its local
term frequency inverted list). The retrieved super-peers are
then checked in random order. The new peer joins the peer
group of the first discovered super-peer that accepts it.

Peer publishing: After a peer has joined a group, it sends
its inverted index to the super-peer of the group. The advan-
tages as compared to publishing all inverted indices directly
to DHT are:

1. All the peers are directly connected to the super-peer
of their group. They thus do not have to query the
DHT keyword by keyword for publishing their in-
verted index, which in the case of n peers would re-
quire O(log(n)) messages for each distinct term at each
peer.

2. In contrast to publishing each individual term in a
DHT, the inverted index can be sent to the super-peer
in a single message and thus can be efficiently com-
pressed.

In our approach, we rely on periodic sending of the peer
indices to the super-peers. The super-peers use a sliding-
window technique to maintain the information for their re-
spective groups. Thus, the only requirement for the nor-
mal peers is that the period for re-sending their information
is (at most) equal to the length of this sliding window. A
delta-updating, or a single PING message to notify a super-
peer that some peer is still alive, can also be used to signif-
icantly reduce the number and size of the messages. Note



that optimizations like the delta-updating or the PING mes-
sage are not possible in the individual DHT publishing sce-
nario, since they would also have to be sent to all affected
DHT peers, and thus not save messages.

Super-peer publishing: The inverted index as published
in the global DHT is based on periodic re-publishing by all
super-peers. The super-peers group peer frequencies per
term, and publish them in the DHT. Meta-data for all the
group’s peers with respect to each term is grouped in a sin-
gle message, thus (a) requiring only a single DHT lookup
and only one publishing message per term, and (b) en-
abling efficient compression as well as delta-updating. A
small disadvantage with respect to the message grouping is
that although less messages will be needed, each individ-
ual message may get bigger. This is because messages now
comprise all information for a term with respect to all the
peers in the group. This slight overhead, however, is eas-
ily outperformed by the significantly fewer required DHT
lookups, each of which costing log(n) messages.

Peers leaving the network: Since we rely on periodic re-
publishing, we do not have to act in the case of a normal
peer leaving the network (either by expected departure or
by unexpected failure): the super-peers and the global DHT
itself will automatically recover without loss of data (see for
example [23, 1]). The normal peer’s summary published
at the super-peer will also eventually expire, get removed
from the super-peer and in turn from the DHT inverted in-
dex. Any query routed to this peer in the meantime will
simply fail, and the next promising peer will be selected for
routing.

Whenever a super-peer leaves the network, all connected
peers in its group need to re-attach themselves to a differ-
ent group, or create their own group by becoming super-
peers themselves. If the disconnection of the super-peer
is announced, the super-peer transfers responsibility for
the group to any of its connected peers before departure.
It transmits the group’s collected information to the new
super-peer (such that the group’s peers do not need to re-
build it from scratch but can keep updating it), and notifies
all the peers in its group about the change. In case of an un-
expected failure of a super-peer the peers of its group indi-
vidually reconnect to the network and join another group as
described above. In either case, the new super-peer does not
need to re-publish the information to the global DHT imme-
diately, so no extra publishing cost occurs from changing
the super-peer. Instead, the group’s information needs to be
re-published, refreshed or updated only prior the expiration
of the old information.

3.2 Query Processing

Query Processing in the basic approach is a two step pro-
cess: (a) first all relevant peers need to be detected (the col-
lection selection problem), and (b) the top « relevant peers
have to be queried to return the results to the query initiator.
Note that during the query processing task the super-peers
behave just like normal peers: they are not required to act as
a single entry point for their group. Instead, direct commu-
nication with all peers is facilitated using the standard query
features of the specific DHT implementation.

Peer selection: There is rich literature on collection se-
lection techniques in distributed search. GIOSS [10] creates
a centralized meta-data repository which enables collection
ranking for queries. CORI [4] represents collections as huge
documents, and modifies the TF + IDF function accordingly.
DTF [18] proposes a theoretic framework which minimizes
the time and cost and maximizes the retrieval quality of the
query.

The distributed indexing model we provide in our ap-
proach enables the use of such standard collection selection
algorithms. In fact, we use CORI for peer selection, due
to its performance and simplicity. CORI performs well and
gracefully scales for large networks. The CORI score s; for
each collection i for each query q is calculated with the fol-
lowing formula:
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d; and d;, are constants with a default value of 0.4 (for
more information on how to set these constants see [4]).
df;, is the document frequency of term ¢ in collection i (we
refer to it as Peer Frequency in our DHT setup) and cf, is
the collection frequency, that is, the number of collections
where ¢ occurs at least once. maxg; is the maximum doc-
ument frequency of the most frequent term in collection i
(what we call Max. Peer Frequency at the DHT). |C| is the
number of collections (in our case an estimation on the total
number of peers).

Comparing the data stored in the DHT (Table 1) and the
data required from the CORI algorithm, we can see that
all required data is already stored in the DHT, except for
the estimation of the total number of collections |C|. Thus,
for each query term the necessary parameters can be eas-
ily retrieved by only one DHT lookup per term. The num-
ber of collections (peers) |C| is a rather stable attribute of
the DHT (practically required from most of the query rout-
ing algorithms), and can be inexpensively estimated over a
DHT [13, 11]. In our system we use an efficient proposal
based on random walk [13] to estimate |C|.



Query execution: After the top-a most promising peers
have been identified, the query is routed to each individual
peer for execution. The respective Inverse Collection Fre-
quency ICF (the number of the peers that carry the term
at least once) for each query term is attached to the query,
to allow all peers to properly weight the importance of
each term, and select the top-k documents, using a normal
TF=IDF score. Links to the results are returned to the query
initiator, ordered by relevance with respect to the query.

Since it simply relies on the base functions of the DHT,
the query routing technique in our approach is not a novel
contribution of this work. We only selected it as one out
of the many possible query execution techniques; for im-
plementation details please refer to the original work cited
above. For the same reason it is also out of the scope
of this work to evaluate the precision-recall or the perfor-
mance/execution complexity of query execution: they are
exactly the same as in the cited papers. In contrast, our
focus is on efficiently maintaining the required informa-
tion for arbitrary query execution techniques that work on
DHTs.

4 Clustering-enhanced Algorithm

Though the basic algorithm has a slight overhead by first
sending index information to the super-peers and then pub-
lishing it in the DHT, we will show in the evaluation that
it still outperforms the naive publishing of all vocabulary
terms by each peer by far. This gain is due to the efficient
handling made possible by overlapping terms in the super-
peers, which requires significantly less DHT lookup mes-
sages.

In fact, the communication between the peers and their
super-peers is inexpensive: no DHT lookups are needed,
the messages can be efficiently compressed, and delta-
publishing can be used to further reduce the size of the mes-
sages. In contrast, communication between the super-peers
and the DHT overlay for actually publishing the group’s
data is the expensive part of the publishing process: it re-
quires many DHT lookups, each of them generating log(n)
messages. Thus, reducing the number of DHT lookups
that the super-peers require can essentially reduce the DHT
maintenance cost.

In our basic algorithm peers just group randomly around
a super-peer. In this section we explore how DHT mainte-
nance costs can be even further reduced by a more sophisti-
cated peer grouping/clustering based on their respective vo-
cabulary. Since such a clustering increases the term overlap
between the peers in the cluster, it decreases the number of
distinct terms within each cluster. As a result, the super-peer
responsible for that cluster will need to perform fewer DHT
lookups for publishing the total terms of the collections.

While decreasing the distinct terms per super-peer by in-

creasing the expected overlap between terms of the peers in
the same group, we keep the average capacity of the super-
peers as in the basic approach, but replace the randomly-
created groups of the basic algorithm with clusters of sim-
ilar peers. For this, we need an efficient distributed clus-
tering algorithm to assign peers with similar terms to the
same cluster. The algorithm touches two parts of the basic
random-grouping algorithm:(a) the super-peer publishing in
the DHT now also includes aggregated cluster information
which enable efficient selection of “good” clusters for join-
ing peers, and (b) the process of joining peers which is now
performed in an overlap-increasing approach. In all other
respects the clustering enhanced algorithm just works like
the basic algorithm.

4.1 Aggregated Cluster Information Pub-
lishing

We slightly enhance the DHT structure to enable efficient
overlap-increasing cluster selection for joining peers. Apart
from the virtual peer granularity information, each cluster’s
super-peer now publishes in addition aggregated cluster in-
formation for its cluster. For each of the cluster’s top-4 most
frequent words, the super-peer publishes an extra record
to the DHT, including the overall cluster frequency. The
cluster-granularity records can be easily distinguished from
the peer-granularity records, since the Peer:IP field in the
former is empty (see, for example, Table 2).

Keyword | Peer:IP PF | Max PF | Super-peer:
Address IP Address

Tennis P]]ZIP]] 14 43 P2:IP2
P]IIP] 35 57 P4IIP4
P3 . 1P3 32 64 P4 . 1P4
null 67 78 P4 . IP4

Cream P;: IP3 34 64 Py: 1P,

Table 2. Logical Top DHT Routing Table for
clustering-enhanced approach

Note that the additional cluster-granularity data is of neg-
ligible size and requires no extra messages. A typical value
for the top-4 keyword is lower than 10, which generates
a total of 10 additional bytes. Furthermore, the additional
data can be piggybacked on the existing DHT-publishing
messages.



4.2 Selecting Clusters with Maximum
Overlap

The main difference between the clustering-enhanced
approach and the basic algorithm is on how the peers se-
lect super-peers when they join the network: now peers re-
quire support for a fully distributed clustering mechanism.
The clustering mechanism is supported by an enhancement
in the DHT layer, such that: (a) the cluster centroids can
be easily retrieved by new peers, and (b) the new peers can
efficiently find clusters similar to their collection, without
comparison to all the different centroids.

Apart from the aggregated cluster information publish-
ing (section 4.1) we also need a compact representation for
the cluster centroids. In literature, cluster centroids are usu-
ally represented by variations of a term frequency matrix
keeping some statistics for each of the terms occurring in
the cluster. However, this is very expensive for collections
in distributed scenarios, since centroids need to be trans-
fered over the network. Since our approach only aims at
reducing the number of distinct terms within a cluster, the
term frequency can be safely ignored. Hence, we use sim-
ple bloom filters for representing cluster centroids and peer
collections.

Computing and representing cluster centroids: The
super-peer of each cluster is responsible to create the clus-
ter centroid. To do that super-peers already have all the re-
quired information from their group’s peers, i.e. the key-
words from their inverted indices. The super-peer now uses
a bloom filter to to represent the cluster centroid. The
Bloom filter data structure was first proposed in [3], as a
space-efficient representation of sets S = {ej, ez, e3...¢e,}
of n elements from a universe U. A Bloom filter consists of
an array of m bits and a set of k independent hash functions
F = {fi, f>... fi}, which hash elements of U to an integer
in the range of [1,m]. The m bits are initially set to 0 in an
empty bloom filter'. An element e is inserted into the bloom
filter by setting all positions f;(e) of the bit array to 1.
Bloom filters allow efficient membership queries: for
any given element e € U, we can safely conclude that e
is not present in the original collection if at least one of
the positions computed by the hash functions of the bloom
filter points to a bit which is set to 0. However, Bloom fil-
ters suffer from false positives; due to hash collisions, it
is possible that all bits representing a certain element have
been set to 1 by the insertion of other elements. The prob-
ability that such a membership test yields a false positive is
P(false— positive) = (1 —e~*/myk The information density
of a bit filter is optimal when the probability of each bit to

'We use the expressions ‘A bit is set to true/false’ and ‘A bit is set to
1/0’ interchangeably.

be setis 1/2. For a bloom filter, this is the case when setting

the number of hash functions to k ~ * x In(2).

Clustering objective function: The objective function
for our clustering counts the number of the bloom filter bits
that have to be changed from false to true in the cluster sum-
mary, if the peer joins this cluster. Note that each cluster has
an upper limit for peers, so the clusters’ bloom filters are not
expected to become too dense, which would constantly re-
sult in a low number for the objective function. Formally
the objective function for choosing a cluster for a peer can
be defined as:

Definition Let the new peer be P;, and the bloom filter for
its collection be BFp,. For all candidate clusters C,, with
bloom filter centroids BF ¢, the objective function f(P;, Cy)
is:

f(P;,C)) = dif f{(BF¢, or BFp),BFe) (1)

where dif f(BF;, BF ;) equals the number of bits that the two
bloom filters differ in. The best cluster is the one that mini-
mizes the objective function.

The above definition indeed leads to the desired cluster-
ing. It can be shown that with high probability the number
of new words added on a collection reduces when the ob-
jective function gives lower results. The proof is based on
an operation for estimating the number of elements hashed
to a Bloom filter [16]. For brevity we only sketch the proof
here. The full proof is found in [19] :

1. Let the Bloom filters BF ¢, and BF ¢, represent the cen-
troids of two collections C; and C,, respectively. Fur-
thermore, let the Bloom filter of some new peer p be
denoted as BF,, and assume that all Bloom filters are
created using the same hash functions.

2. Then the total number of elements 7; and 7, hashed in
BF| and BF,, respectively, can be estimated with some
confidence level using the operation provided by [16].

3. Now assume that adding p’s collection to C; results in
Z1 bits to be switched from O to 1 in BF¢,, analogously
2o for BF ¢,. Estimating the number of elements in the
changed BF¢, gives us a new expected n|. We calcu-
late n), analogously for C,. Of course for calculating
n’ and n), we have to use the same confidence level as
in step 2.

4. Finally n} —n; gives the expected number of new terms
that will be added in C; and grows with z; (likewise
for C, and zp). Selecting the cluster that minimizes
our objective function therefore means that less new
terms will be added to the cluster, and many terms will
overlap with the existing cluster terms.



In summary, the proposed cluster centroids are simple to
build, without any extra network overhead. The approach
creates acceptable clusters and significantly reduces the dis-
tinct terms per cluster as compared to the random grouping
method of our basic algorithm.

4.3 Managing Collection Diversity by Vir-
tual Peers

Real-life peer collections, as real persons’ interests, are
often quite diverse with respect to the topics of interest: a
peer may collect documents about the topic of jazz music,
and at the same time documents on spontaneous nuclear fis-
sion and football results. Trying to find the best cluster for a
multi-thematic peer is difficult, and may lead to suboptimal
clustering.

An approach for solving this problem is to split each peer
into a set of virtual peers with a more homogeneous top-
ics each by document clustering. Ideally, each virtual peer
should be focusing on only a single subject, so that efficient
clustering around super-peers can be performed. Then, each
virtual peer can act independently, join the best-matching
cluster, and post its contents to the super-peer, that in turn
will have a more homogeneous collections of terms to post
to the global DHT.

The partitioning of each peer’s collections into virtual
peers is a local process. A thematic clustering is performed
using only the local information present in the peer’s collec-
tion. Each peer is free to select a suitable number of clusters
and the actual clustering algorithm for determining its vir-
tual peers. The peers can even choose to use a partitioning
hierarchy e.g. the file system structure or an ontology like
MeSH for medical documents, for creating suitable clusters
instead of employing a statistical clustering mechanism.

4.4 Joining Peers in the
Enhanced Algorithm

Clustering-

Now we are ready to present how the actual joining of
peers is handled by the cluster-enhanced algorithm. Like in
the basic algorithm the first step of a new peer joining the
network is to join the DHT; again all peers contribute re-
sources to the DHT. In a second step, each new peer splits
itself to a set of virtual peers, using local document clus-
tering as explained in section 4.3. Each of the virtual peers
then independently finds a suitable cluster in the P2P net-
work. If no suitable cluster is found, or if a peer would in-
troduce to many new terms into all clusters, it creates a new
cluster and becomes the respective super-peer. Searching
for a suitable cluster is based on normal DHT lookups:

1. The virtual peer computes the term frequency list for
its collection, which it uses to detect the A most fre-
quent terms, 71,75, ...T,

2. For all terms T; € Ty, 7T»,...T,, the virtual peer per-
forms a DHT lookup, and retrieves the information as-
sociated to all the clusters for which 7 is in the top-A
terms of the cluster. Note that each cluster publishes
the score for its top-A terms in the DHT (see table 2).
Only one DHT lookup is required for each term and
the individual super-peers need not be contacted yet.

3. If no candidate super-peer is found (i.e. none of the
terms 11,7, ... T, belongs in the top-4 keywords of
the existing super-peers), the virtual peer creates a new
cluster, and becomes a super-peer responsible for that
cluster.

4. If candidate super-peers are found, they are ordered
based on their aggregated relevance to all the A terms
(i.e. using a TF*IDF score). The top-u super-peers
based on this order are extracted.

5. The virtual peer sends its centroid/bloom filter at the
top u super-peers asking for the distance between the
cluster centroids and its own centroid. The super-
peers compute the distance using the objective func-
tion (Equation 1) and return it at the virtual peer. The
choice of putting the burden of distance computation
at the super-peers instead of the joining peers was
made because the joining peers’ centroids can easier
be transferred over the network compared to the cluster
centroids (due to lower sparsity, enabling higher bloom
filter compression).

6. Finally the virtual peer joins the optimal cluster, ac-
cording to the objective function results.

The above procedure incurs max. A * log(n) + u total
messages. After a virtual peer joins a cluster, it periodi-
cally sends its inverted index to the super-peer of the clus-
ter. Again this requires only one message per virtual peer,
and can be effectively optimized by compression and delta-
submission. When a virtual peer sends its information, the
respective super-peer updates the cluster centroid to reflect
all current information.

Peers leaving the network (expected or unexpected) and
the actual querying are handled exactly in the same way as
described in Section 3.

5 Evaluation

We evaluated our two proposed approaches using real
document collections from MEDLINE [14], and compared
to the traditional flat DHT publishing approach. The MED-
LINE data set is a database produced by the US National
Library of Medicine, and currently contains information for
more than 11 million citations. Most of the citations are
accompanied with abstracts, and are annotated according



to the MeSH (Medical Subject Headings) database [15].
MeSH includes a controlled set of headings of various
specificities, for annotating the citations.

Our document collection was created as follows: 200
headings were randomly selected from the MeSH hierar-
chy. For each heading, 800 citations annotated with this
heading were selected. The citations included title and ab-
stract. This resulted in a total of 160.000 documents. This
document subset was used to build the peer collections.

Building the peer collections: Real-life peer collections,
as in real persons’ interests, are often multi-thematic. Some
users may be well-focused, having very specific documents
of only one topic. Other users may focus on a couple of
non-related topics, while still others may just collect many
diverse documents. We take this into account by assigning
collections from several MeSH categories to each peer.

The MeSH headings were also used to split each peer
to virtual peers in the clustering-enhanced approach. While
we cannot expect a MeSH-like annotation for all real P2P
collections, MeSH headings were only used as inexpen-
sive means to implement local clustering, and can be re-
placed with any text clustering algorithm. In fact, we ex-
pect much better performance from a normal clustering al-
gorithm which uses the actual overlap between document
terms, since that will actually lead to clusters with fewer
distinct terms.

Evaluation Results: We evaluated our algorithms with
six different network sizes: 500, 1000, 2000, 3000, 4000
and 5000 peers. Each peer randomly selected 3 MeSH
headings out of the 200, and, for each of the headings, 20
random documents out of the 800 available. The peer col-
lections for each network size were rebuilt three times, and
the experiment was repeated 4 times for each peer collec-
tion, yielding a total of 12 different setups.

In the experiments we compared index maintenance
costs of the basic and clustering-enhanced setups with the
requirements of the flat DHT approach, where each peer
independently publishes the frequency for each term at its
collection at the DHT. We measured number of messages as
well as the total data transfer volume.

Number of messages: All messages were counted, includ-
ing the DHT-lookup messages. Note that each DHT
lookup is generating approx. log(n) distinct DHT
lookup messages.

Transfer volume: We measured the total sum of message
sizes. Apart from the data included in the messages,
we included a network header overhead of 40 bytes for
each message (theoretical minimum for network mes-
sage). Furthermore, GZIP message body compression
was used wherever this was reducing the size of the

message. It turned out that this is the case only when
submitting the peer index from the virtual peer to the
super-peer, or when exchanging bloom filters.

All the approaches relied on periodic republishing: the
full peer data was submitted periodically. We did not in-
clude data churn in the above experiments, since under the
periodic republishing model, the churn does not have an ef-
fect in the messages. The basic and the clustering-enhanced
setups were configured as follows:

Centroid bloom filter length: The clustering-enhanced
approach was executed with bloom filter lengths of
16, 32, 64 and 128 Kbits, to see which size yields
optimal results.

Maximum peers per cluster: The maximum peers per
cluster for the clustering-enhanced approach were de-
termined based on the density of cluster’s centroid
(bloom filter). A maximum density of 50% was al-
lowed. After that, the cluster was not allowed to get
more peers.

Total number of clusters: To get a fair comparison, we
made sure that both the basic and the clustering en-
hanced algorithm have the same number of clusters, so
that the super-peers have the same workload on aver-
age. Since the number of clusters in the clustering-
enhanced approach is dynamically determined (see
joining peers algorithm at section 4.4), the clustering-
enhanced approach was first executed, and the same
number of random clusters were then created for the
basic algorithm for comparison.

Top-A keywords: A value of 4 for 4 was found to be a
good trade-off between clustering quality and cost in
our preliminary experiments.

Top-u super-peers: A value of 3 for u was found to be suf-
ficient in our experiments.

The results clearly show the benefits of our approaches.
Figure 2 plots the number of messages (left-hand scale) and
the total transfer volume for different network sizes. All re-
sults are normalized on the network size (i.e., divided by the
number of peers), and the plot is tagged with the total num-
ber of created clusters (average over all the runs) for each
setup. In all experiments, the basic and clustering-enhanced
algorithm easily outperform the flat DHT model. The per-
formance gain of the two proposed methods compared to
the flat DHT model increases with network size. Further-
more, the clustering-enhanced algorithm was better than the
basic algorithm: the cost for finding the most similar clus-
ter is lower than the benefit of higher keyword overlap at the
super-peers. Due to lack of space, we only present results
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Figure 2. Messaging requirements for differ-
ent network sizes

for bloom filter length equal to 128Kbits. For the full results
the reader is referred to the long version of the paper [19].

Figure 3 presents the effect of the cluster centroid’s
bloom filter size, for the 5000 peers setup. The clustering
approach is plotted with the flat DHT approach and the ba-
sic algorithm for comparison purposes. Note that we use
logarithmic scales in this figure. A bloom filter size of 16
Kbits quickly becomes more than 50% dense, causing the
cluster not to accept new virtual peers. This significantly
reduces the average cluster size and does not allow efficient
clustering or significant keyword overlap. Too many very
small clusters are created. The extra cost of each peer to
find the most similar cluster neutralizes the advantage of the
small keyword overlap in the cluster. Thus the messaging
requirements between the basic and the clustering-enhanced
versions are practically the same. A bloom filter size of 64
Kbits seems to be better suited for clustering. At the op-
posite extreme, 128 Kbits for this setup appear to be not
necessary, incurring a slightly higher cost than the 64 Kbits
centroids case.

6 Conclusions and Outlook

In this paper we presented a hybrid DHT/super peer P2P
system that significantly reduces the network cost for main-
taining a full inverted index within a global DHT. Because
individually publishing all terms of each peers vocabulary
to a global DHT is far too expensive, we group peers around
super-peers that are responsible for integrating all informa-
tion about their connected peers’ collections, and publish it
to the global DHT. The message gain is thus achieved by re-
ducing expensive DHT lookups for a large number of terms.
Experiments with practical data sets indeed show a massive
gain of about an order of magnitude over the conventional
periodic publishing approach in a global DHT.

Figure 3. Effect of Bloom filter size for a fixed
network of 5000 peers

We presented two algorithms differing in the way peers
actually group around super-peers: the basic algorithm
groups peers randomly around super-peers, whereas the
cluster-enhanced approach first splits peers into themati-
cally focused virtual peers that can then be clustered more
effectively, to foster group homogeneity. Whether creating
random groups of peers or using clustering algorithms for
grouping, a sizable term overlap within each group can be
observed. This overlap allows the responsible super-peer to
reduce the number of DHT inserts for the actual publish-
ing of all the terms. Our clustering algorithm increases the
term overlap in each group significantly, and thus requires
even less DHT lookups than the basic approach. Both ap-
proaches reduce the network cost without having negative
effects on the querying precision/recall and performance of
the original DHT model. To the best of our knowledge, this
is the first work proposing a hybrid DHT/super-peer model,
and using this model to derive an essential message gain.

Our future work will address mainly two topics im-
plementing more sophisticated information retrieval tech-
niques, and better peer clustering.

Information retrieval techniques: While our work gives
already significantly better costs for the inverted index
maintenance, we still did not reach the full capabilities of
the information retrieval model. In particular, we did not
yet address the limitations of the simple TF * IDF retrieval
model. For instance, currently conjunctive queries are han-
dled by intersecting lists from different peers in the DHT.
Using intra-cluster communication, peers in a cluster can
efficiently realize information retrieval techniques beyond
the inverted index, which are too complex to run with all
the peers in the flat DHT. Consider for instance a two-step
query execution technique: (a) first find a proper cluster,
and (b) then find the right peers to query within the clus-



ter. Since the number of peers per cluster is rather limited
(as opposed to the total number of peers in the network),
even complex information retrieval infrastructures can be
employed for query evaluation within each cluster. At the
same time, we can limit the inverted index over the global
DHT to aggregated data for the clusters.

Better Peer Clustering: We expect that a more semanti-
cally motivated grouping of peers to clusters will increase
term overlapping even more and further reduce the distinct
terms per cluster. Hence, we will evaluate more complex
distributed clustering algorithms and study their execution
cost in our DHT scenario. This includes the optimiza-
tion of cluster number size, as well as when and how to
merge/break clusters.
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