

Optimizing near duplicate detection for peer-to-peer networks

Odysseas Papapetrou*
Stefan Siersdorfer

Sukriti Ramesh
Wolfgang Nejdl

Introduction

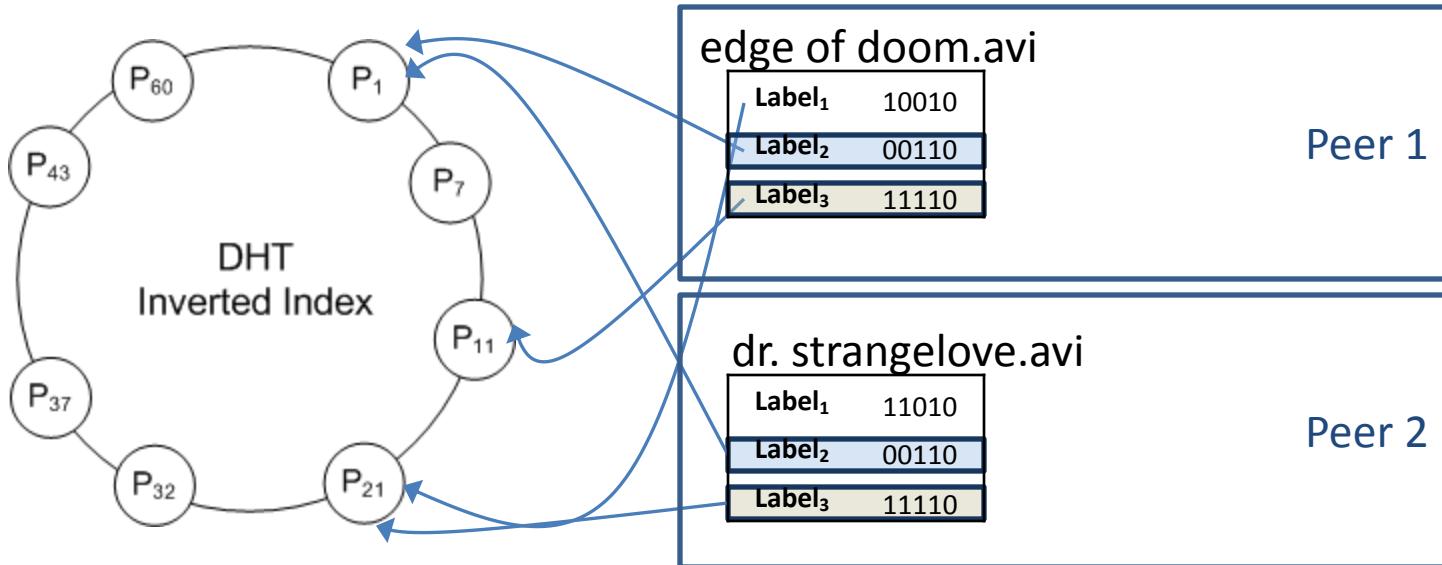
- Near duplicate on the **content level**:
 - near duplicates: resources with minor differences
 - videos with different advertisements, text with last-update-time
 - audio/video of different quality
 - different performance of the same song
- Why near duplicate detection for P2P?
 - Multimedia
 - finding alternative sources to parallelize the download
 - finding media of different resolutions/qualities
 - detecting copies of copyrighted multimedia
 - ignore minor differences, e.g., advertisements
 - Text
 - different versions of the same text
 - ignore insignificant changes, e.g., last-update-time
 - detect copyrighted text
- *Common property*:
 - *One can decide a priori on the minimum similarity for considering two files as near duplicates*
 - *Desired detection probability*

Locality Sensitive Hashing for NDD

- Use Locality Sensitive Hashing (LSH) for building an inverted index of files/resources
 - Resources R_1, R_2, R_3, \dots
 - $R_i \approx R_j$ when $\text{sim}(R_i, R_j) > \text{minSim}$
 - $\text{LSH}(R_i) \rightarrow \text{Labels } \{\text{label}_1, \text{label}_2, \dots, \text{label}_l\}$
 - For example, $\text{LSH}(R_i) \rightarrow \{10010, 01011, 11011\}$
 - If $\text{sim}(R_i, R_j) > \text{minSim} \rightarrow R_i$ and R_j share a label w.h.p.,
 - If $\text{sim}(R_i, R_j) < \text{minSim} \rightarrow R_i$ and R_j do not share a label w.h.p.

Locality Sensitive Hashing over a DHT

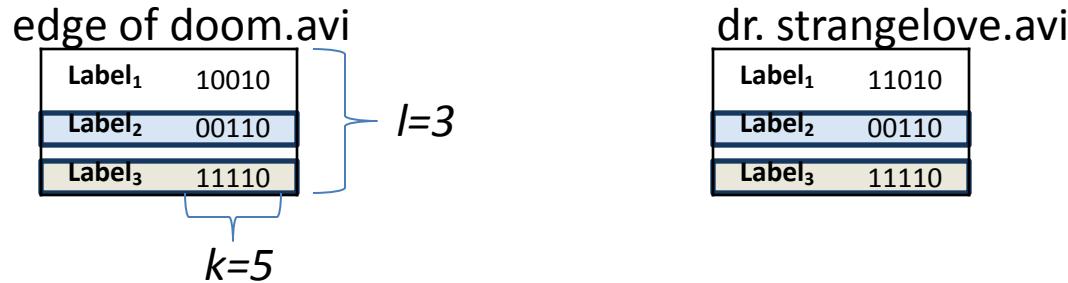
- LSH-based inverted index
 - $\text{LSH}(R_i) \rightarrow \text{Labels } \{\text{label}_1, \text{label}_2, \dots, \text{label}_l\}$



- Indexing: $\text{DHT.put}(\text{label}_x, R_i)$, for $1 \leq x \leq l$, for all resources
- Querying for near duplicates of query R_i :
 $\text{DHT.get}(R_i, \text{label}_x)$, for $1 \leq x \leq l \rightarrow$ union is **potential** near duplicates
- Possible false positives

Locality Sensitive Hashing

- LSH-based inverted index
 - $LSH(R_i) \rightarrow \text{Labels } \{\text{label}_1, \text{label}_2, \dots, \text{label}_l\}$



- Existing works: inverted index over DHT using the labels as keys [LSHForest, Haghani09]
- Crucial parameters
 - $\uparrow l \rightarrow$ false positives \uparrow , network cost \uparrow , detection probability \uparrow
 - $\uparrow k \rightarrow$ false positives \downarrow , network cost \downarrow , detection probability \downarrow
- Focus of our work:
 - *find the optimal combination of l, k that provides the desired detection probability for the given network \rightarrow minimize network cost and make the algorithm more efficient and scalable*

POND: Peer-to-peer Optimized Near duplicate Detection

- Coordinator
 - 1. Collect network statistics
 - 2. Compute optimal parameters
 - 3. Propagate optimal parameters to network
- All peers:
 - 1. Re-compute labels for all resources
 - 2. Re-index labels to DHT
- Periodic repetition to compensate for churn

POND: Peer-to-peer Optimized Near duplicate Detection

- Coordinator
 1. Collect network statistics
 2. Compute optimal parameters
 3. Propagate optimal parameters to network
- All peers:
 1. Re-compute labels for all resources
 2. Re-index labels to DHT
- Periodic repetition to compensate for churn

POND: Peer-to-peer Optimized Near duplicate Detection

- Coordinator
 1. Collect network statistics
 2. Compute optimal parameters
 3. Propagate optimal parameters to network
- All peers:
 1. Re-compute labels for all resources
 2. Re-index labels to DHT
- Periodic repetition to compensate for churn

Collecting network statistics

- Coordinator collects network statistics
 - Network size [Ganesh07]
 - Number of resources per peer
 - Probability distribution function (PDF) for all pairwise similarities in the corpus
- Sampling of a small number of neighbors
 - Pairwise similarities: peers transmit only the media representations (a few kbytes per peer)
 - PDF: represented as equi-width histogram

POND: Peer-to-peer Optimized Near duplicate Detection

- Coordinator
 1. Collect network statistics
 2. Compute optimal parameters
 3. Propagate optimal parameters to network
- All peers:
 1. Re-compute labels for all resources
 2. Re-index labels to DHT
- Periodic repetition to compensate for churn

Computing the optimal parameters (I)

- Coordinator computes optimal configuration
- Input parameters:
 - minimum similarity minSim , detection probability pr_{\min}
- Required statistics:
 - average #queries, number of peers N
- Cost (to minimize)
 - Maintenance: indexing the resources in the DHT
 - Query:
 - querying the DHT for the labels
 - cost for retrieving the false positives
 - cost for retrieving the true near duplicates
- Constraint
 - Detection probability $\geq \text{pr}_{\min}$

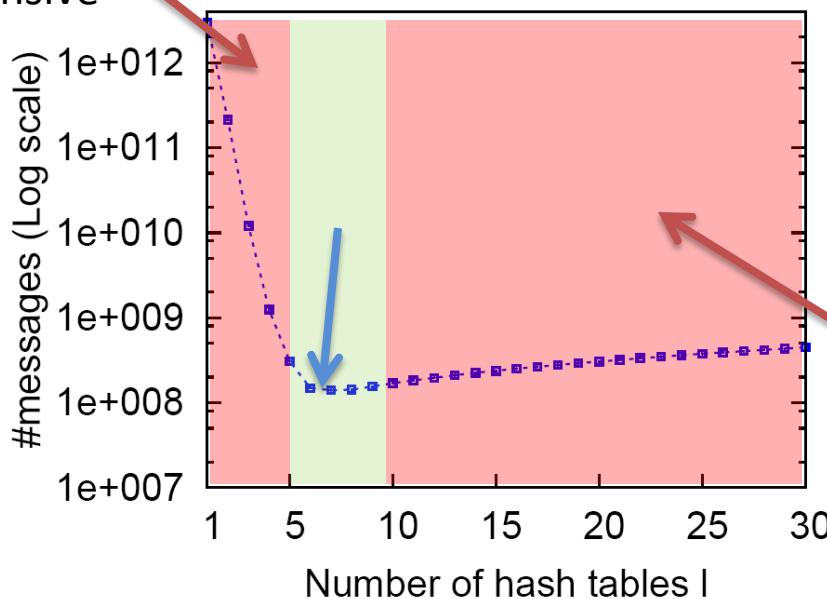
Computing the optimal parameters (II)

Probabilities

- Reduce false positive probability: $\uparrow k, \downarrow l$
- Increase detection probability: $\downarrow k, \uparrow l$
- Optimal combination (proof in the paper)

$$k_0 = \frac{\log(1 - (1 - pr_{min})^{1/l})}{\log(0.5 - \frac{1}{2 \cdot minSim}) + \log(minSim)}$$

Querying
too expensive



Cost function convex →
convex optimization to
identify the combination with
minimum cost

Maintenance too
expensive

POND: Peer-to-peer Optimized Near duplicate Detection

- Coordinator
 1. Collect network statistics
 2. Compute optimal parameters
 3. Propagate optimal parameters to network
- All peers:
 1. Re-compute labels for all resources
 2. Re-index labels to DHT
- Periodic repetition to compensate for churn

Propagating the optimal parameters

- Propagating the optimal parameters
 - Dissemination over DHT [El-Ansary03]
 - Cost: $O(N)$ messages, $O(\log(N))$ time
- Each peer
 - Computes the updated labels of all its resources
 - Indexes them in the DHT: $O(\log(N))$ per resource

POND: Peer-to-peer Optimized Near duplicate Detection

- Coordinator
 1. Collect network statistics
 2. Compute optimal parameters
 3. Propagate optimal parameters to network
- All peers:
 1. Re-compute labels for all resources
 2. Re-index labels to DHT
- Periodic repetition to compensate for churn

Query execution

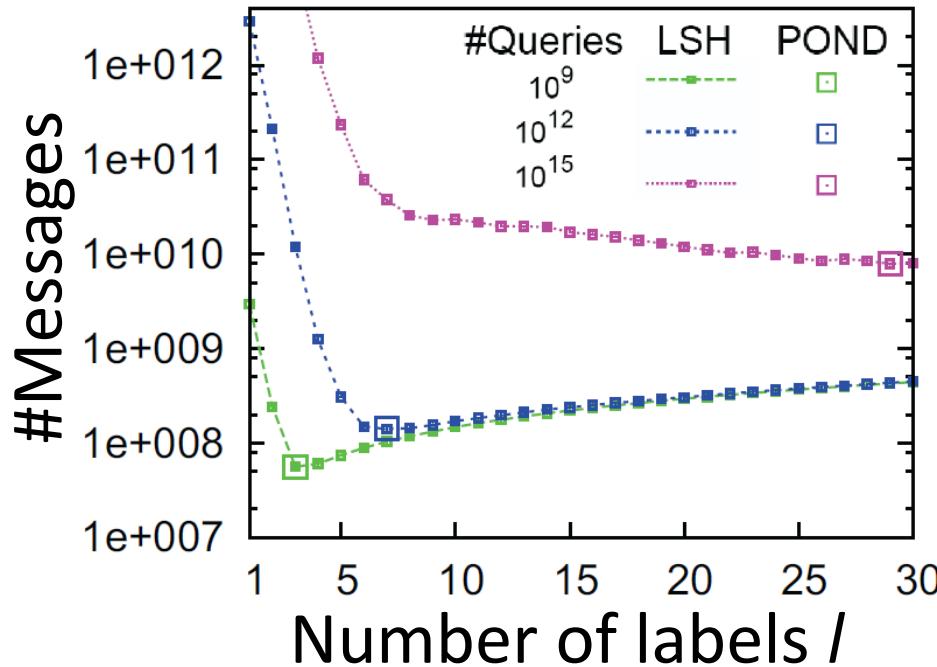
- Finding all near duplicates of a resource R_q
 - Compute the labels of the resource, according to l and k
 - Lookup all labels at DHT → potential near duplicates
 - For each potential near duplicate
 - Send a *compact representation* of R_q to the peer (a few Kbytes)
 - Retrieve the file only if it is a near duplicate
 - Large multimedia files are never transmitted over the network

Evaluation

- Datasets:
 - Reuters RCV1: 802 thousands documents, ~1 Gbyte
 - 22455 videos (TubeKit [Shah08]), 144 Gbytes
 - 22455 audios (82 Gbytes)
- Compare with non-optimized LSH
 - Network Cost
 - Retrieval effectiveness – Recall

Comparison with non-optimized alg.

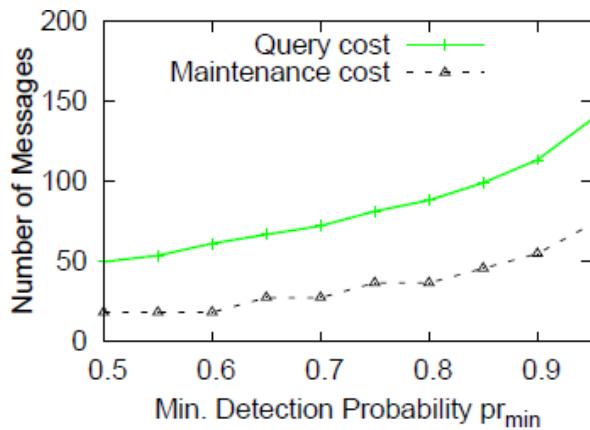
- RCV1, $pr_{min}=0.8$, $minSim=0.9$, 100000 peers
- Vary #queries per republishing period



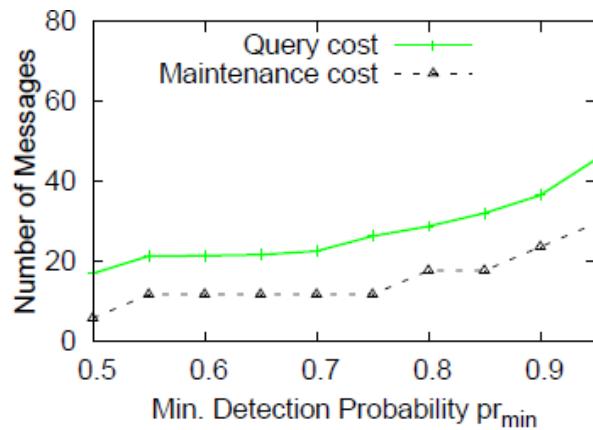
- POND derives configuration with minimal cost
- Same probabilistic guarantees and recall with non-optimized LSH

Effect of desired detection probability:: Network cost

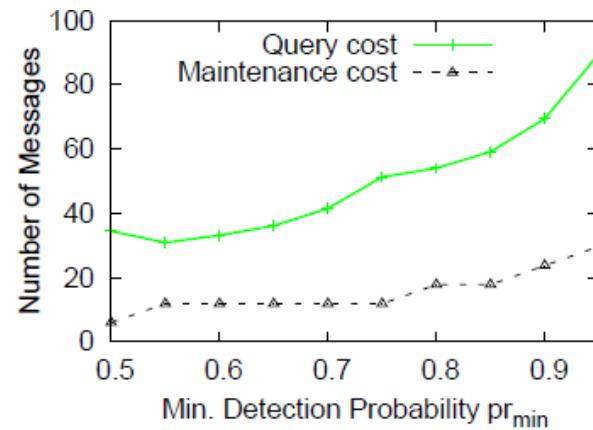
RCV1 (100k peers)



Videos(1000 peers)



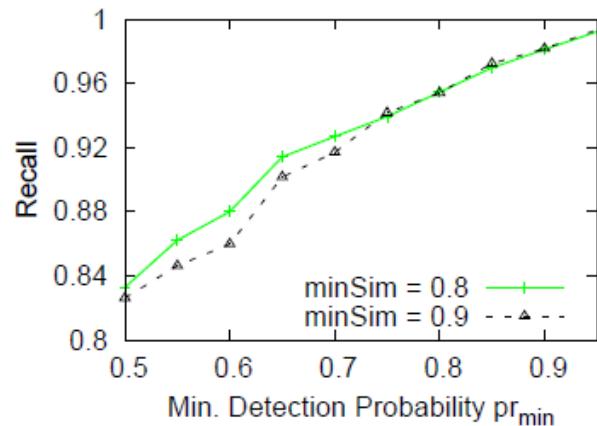
Audio(1000 peers)



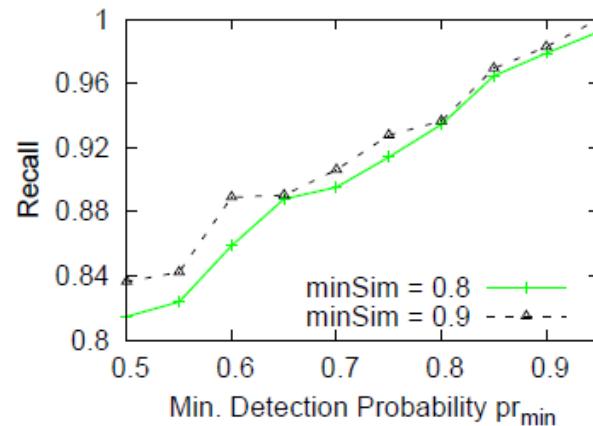
- Maintenance cost per resource/query cost per query
- Cost can be controlled using pr_{min}
- Manageable for large collections, e.g., for indexing 100 videos with $pr_{min}=0.9$, only ~ 2000 small messages required
- All messages are equi-sized and below 1Kbyte \rightarrow transfer volume proportional to #messages

Effect of desired detection probability:: Recall

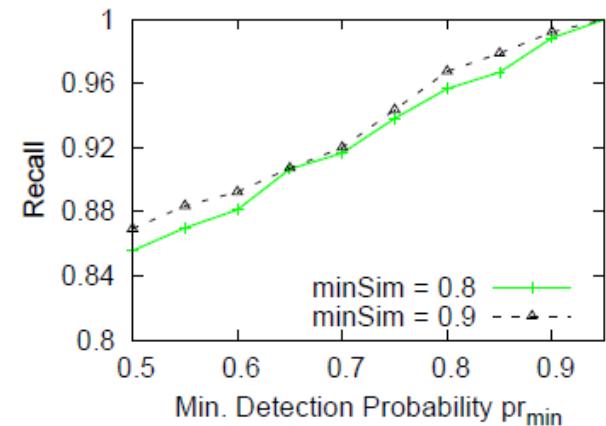
RCV1 (100k peers)



Videos(1000 peers)



Audio(1000 peers)



- Probabilistic guarantees always satisfied
- Recall:cost tradeoff fine-tuned with pr_{min}
- Recall insensitive to $minSim$: algorithm adapts the parameters to satisfy pr_{min}

Conclusions

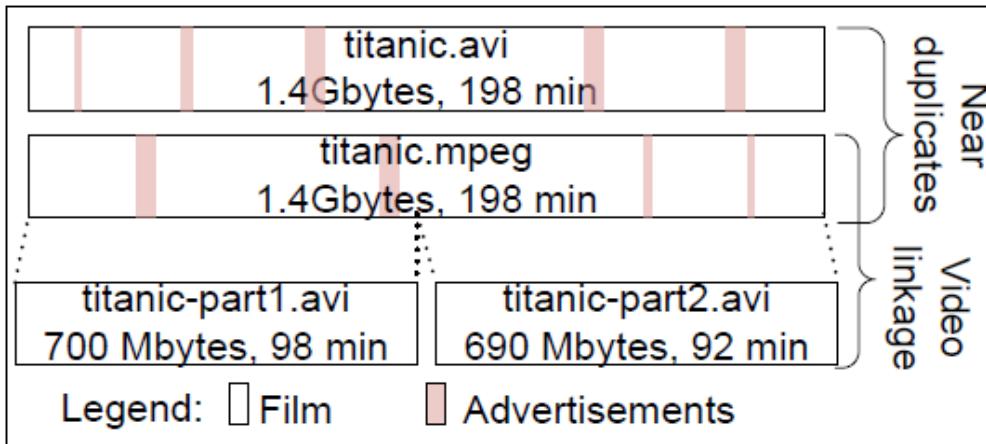
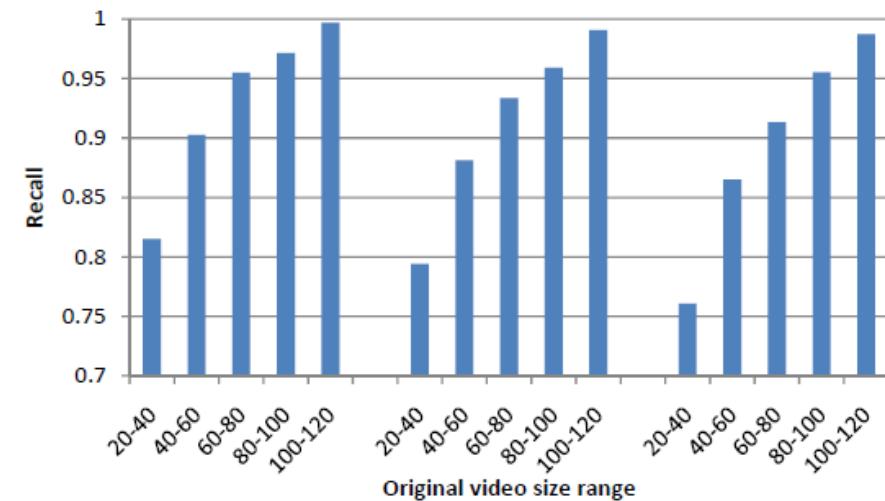
- Target: Determine the l and k values that minimize the network cost and satisfy the probabilistic guarantees
- Performance improvements easily reaches an order of magnitude
- Additional information in the paper
 - Compact representations for text, audio, video
 - Video linkage, with extensive evaluation
- Future work
 - Repeat analysis using different network configurations [LSHForest05, Haghani09]
 - Effect of similarity function
 - Possible extension to other application scenarios, such as tag recommendation and annotation sharing

Thank you

Questions?

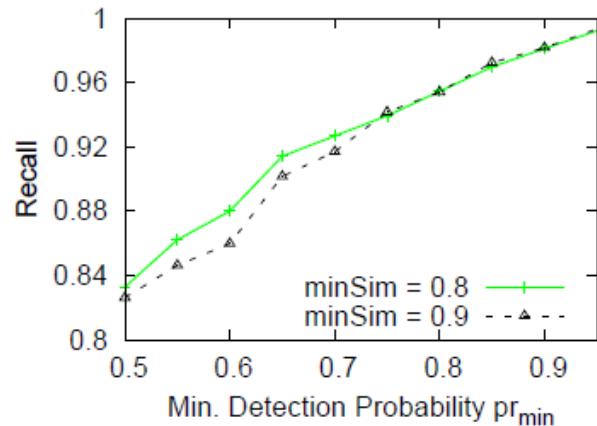
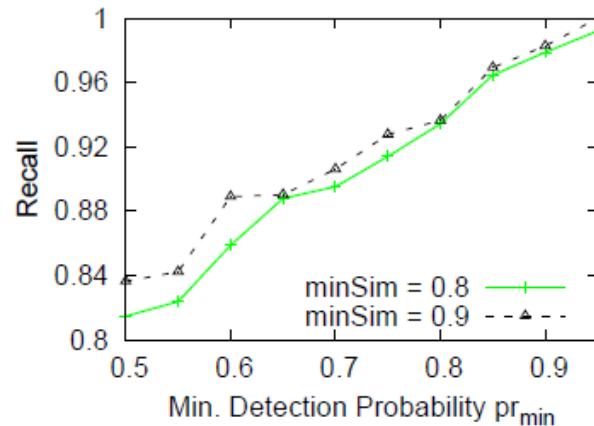
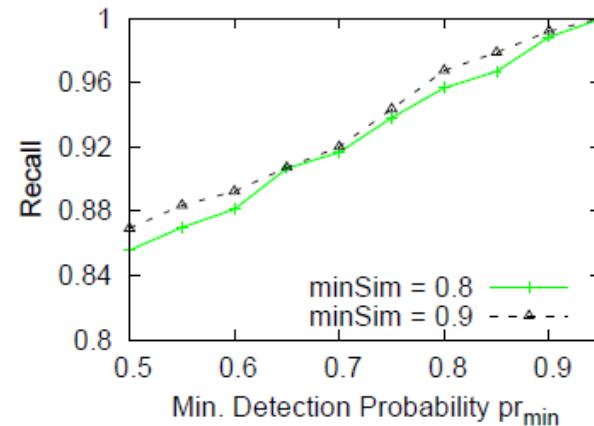
Evaluation of video linkage

- Video linkage:
 - Experimental evaluation:
 - Split video to X parts ($X=\{2,3,4\}$)
 - $pr_{min}=0.9$, $minSim=0.9$
 - Use any one of the parts as a query, and try to detect the original file
 - Cost: At most 110 messages, for the largest videos

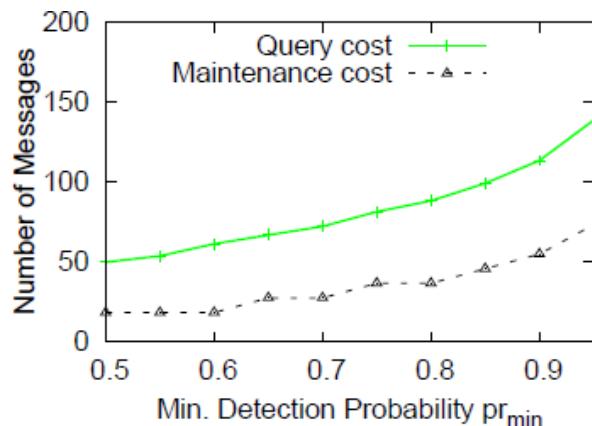
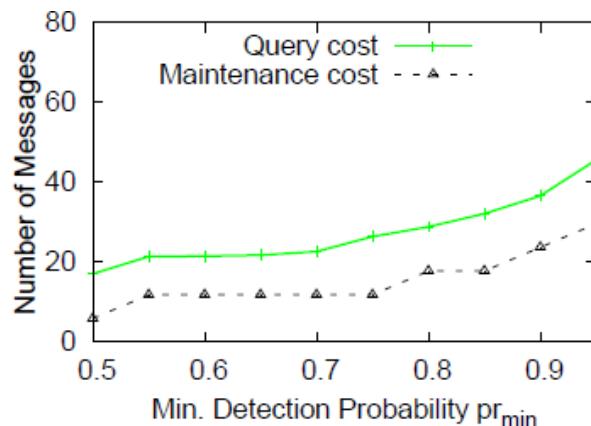
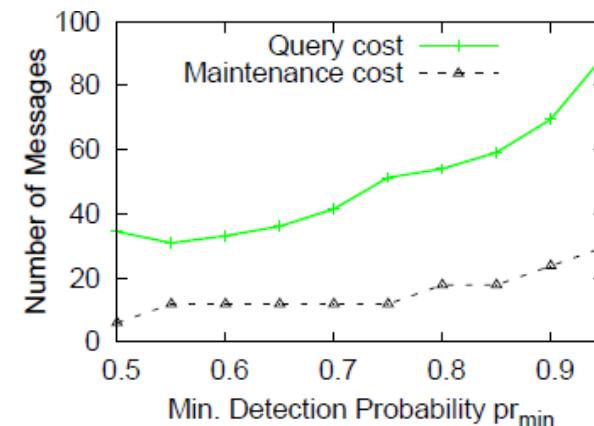


Effect of desired detection probability

- Recall:



- Cost:



Related work

Existing work on NDD

- P2P MACSIS [Yang03]
 - NDD for audio files
 - Based on gossiping
- Optimizing LSH for centralized systems [Dong08]
 - Focuses on computational cost
- LSH with p -stable distributions [Haghani09]
- LSH Forest [LSHForest05]
 - Repeating the analysis of POND for these network configurations

Further details (I)

- Extensions presented in the paper
 - Compact representations for text, audio, video
 - Independent of binary encoding and resolution
 - $|\text{representation}(R_i)|$ only a few Kbytes, even for videos
 - $\text{DHT.put}(R_i, \text{label}_x, \text{representation}(R_i))$
 - Instead of exchanging the resources, peers exchange representations

Further details (II)

- Extensions presented in the paper
 - Video linkage
 - For practical reasons, users may break large videos e.g., titanic.avi → titanic-part1.avi and titanic-part2.avi
 - Use keyframes to *conceptually* split each video to smaller segments
 - Expected number of segments configurable
 - Each video segment is handled individually, w.r.t. indexing and query execution
 - Discovering one segment sufficient for full linkage
 - Experimental evaluation