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Introduction
• Near duplicate on the content level:

– near duplicates: resources with minor differences
– videos with different advertisements, text with last-update-time
– audio/video of different quality
– different performance of the same song

• Why near duplicate detection for P2P?
– Multimedia

• finding alternative sources to parallelize the download
• finding media of different resolutions/qualities
• detecting copies of copyrighted multimedia
• ignore minor differences, e.g., advertisements

– Text
• different versions of the same text
• ignore insignificant changes, e.g., last-update-time
• detect copyrighted text

• Common property: 
– One can decide a priori on the minimum similarity for considering two 

files as near duplicates
– Desired detection probability
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Locality Sensitive Hashing for NDD
• Use Locality Sensitive Hashing (LSH) for building 

an inverted index of files/resources

– Resources R1, R2, R3, …

– Ri≈ Rj when sim(Ri , Rj) > minSim

– LSH(Ri)  Labels {label1, label2, …, labell}

– For example, LSH(Ri)  {10010, 01011, 11011}

– If sim(Ri , Rj) > minSim Ri and Rj share a label 
w.h.p., 

– If sim(Ri , Rj) < minSim Ri and Rj do not share a 
label w.h.p.
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Locality Sensitive Hashing over a DHT
• LSH-based inverted index

– LSH(Ri)  Labels {label1, label2, …, labell}

– Indexing: DHT.put(labelx, Ri), for 1<=x<=l, for all resources
– Querying for near duplicates of query Ri : 

DHT.get(Ri. labelx), for 1<=x<=l  union is potential near 
duplicates

– Possible false positives
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Locality Sensitive Hashing
• LSH-based inverted index

– LSH(Ri)  Labels {label1, label2, …, labell}

• Existing works: inverted index over DHT using the labels as 
keys [LSHForest, Haghani09]

• Crucial parameters
– ↑ l  false positives↑, network cost↑, detection probability↑ 
– ↑ k false positives↓, network cost↓, detection probability↓

• Focus of our work:
– find the optimal combination of l, k that provides the desired 

detection probability for the given network minimize network 
cost and make the algorithm more efficient and scalable
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POND: Peer-to-peer Optimized Near 
duplicate Detection
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2. Compute optimal parameters

3. Propagate optimal parameters to network

• All peers:

1. Re-compute labels for all resources

2. Re-index labels to DHT

• Periodic repetition to compensate for churn
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Collecting network statistics
• Coordinator collects network statistics

– Network size [Ganesh07]

– Number of resources per peer

– Probability distribution function (PDF) for all 
pairwise similarities in the corpus

• Sampling of a small number of neighbors

– Pairwise similarities: peers transmit only the 
media representations (a few kbytes per peer)

– PDF: represented as equi-width histogram
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Computing the optimal parameters  (I)
• Coordinator computes optimal configuration
• Input parameters: 

– minimum similarity minSim, detection probability 
prmin

• Required statistics: 
– average #queries, number of peers N

• Cost (to minimize)
– Maintenance: indexing the resources in the DHT
– Query:

• querying the DHT for the labels
• cost for retrieving the false positives
• cost for retrieving the true near duplicates

• Constraint
– Detection probability >= prmin
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Computing the optimal parameters (II)

Probabilities

– Reduce false positive probability: ↑k , ↓l

– Increase detection probability: ↓ k , ↑l

– Optimal combination (proof in the paper)
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Propagating the optimal parameters

• Propagating the optimal parameters

– Dissemination over DHT [El-Ansary03]

– Cost: O(N) messages, O(log(N)) time

• Each peer

– Computes the updated labels of all its resources

– Indexes them in the DHT: O(log(N)) per resource
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Query execution
• Finding all near duplicates of a resource Rq

– Compute the labels of the resource, according to l 
and k

– Lookup all labels at DHT  potential near 
duplicates

– For each potential near duplicate

• Send a compact representation of Rq to the peer (a few 
Kbytes)

• Retrieve the file only if it is a near duplicate

• Large multimedia files are never transmitted over the 
network
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Evaluation
• Datasets:

– Reuters RCV1: 802 thousands documents, ~1 Gbyte

– 22455 videos (TubeKit [Shah08]), 144 Gbytes

– 22455 audios (82 Gbytes)

• Compare with non-optimized LSH

– Network Cost

– Retrieval effectiveness – Recall
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• RCV1, prmin=0.8, minSim=0.9, 100000 peers

• Vary #queries per republishing period

• POND derives configuration with minimal cost

• Same probabilistic guarantees and recall with non-
optimized LSH

#M
es

sa
ge

s

Number of labels l

Comparison with non-optimized alg.
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RCV1 (100k peers) Videos(1000 peers)            Audio(1000 peers)

• Maintenance cost per resource/query cost per query

• Cost can be controlled using prmin

• Manageable for large collections, e.g., for indexing 100 videos 
with prmin=0.9, only ~2000 small messages required

• All messages are equi-sized and below 1Kbyte  transfer 
volume proportional to #messages

Effect of desired detection probability:: Network cost
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RCV1 (100k peers) Videos(1000 peers)                  Audio(1000 peers)

• Probabilistic guarantees always satisfied

• Recall:cost tradeoff fine-tuned with prmin

• Recall insensitive to minSim: algorithm adapts the 
parameters to satisfy prmin

Effect of desired detection probability:: Recall
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Conclusions
• Target: Determine the l and k values that 

minimize the network cost and satisfy the 
probabilistic guarantees

• Performance improvements easily reaches an 
order of magnitude

• Additional information in the paper
– Compact representations for text, audio, video
– Video linkage, with extensive evaluation

• Future work
– Repeat analysis using different network configurations 

[LSHForest05, Haghani09]
– Effect of similarity function
– Possible extension to other application scenarios, such 

as tag recommendation and annotation sharing
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Thank you

Questions?
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Evaluation of video linkage
• Video linkage: 

– Experimental evaluation: 
• Split video to X parts (X={2,3,4})

• prmin=0.9, minSim=0.9

• Use any one of the parts as a query, and try to detect the 
original file

• Cost: At most 110 messages, for the largest videos
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• Recall:

• Cost:

Effect of desired detection probability
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Related work
Existing work on NDD

– P2P MACSIS [Yang03]

• NDD for audio files

• Based on gossiping

– Optimizing LSH for centralized systems [Dong08]

• Focuses on computational cost

– LSH with p-stable distributions [Haghani09]

– LSH Forest [LSHForest05]

• Repeating the analysis of POND for these network 
configurations
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Further details (I)
• Extensions presented in the paper

– Compact representations for text, audio, video

• Independent of binary encoding and resolution

• |representation(Ri)| only a few Kbytes, even for videos

• DHT.put(Ri. labelx , representation(Ri) )

• Instead of exchanging the resources, peers exchange 
representations

Optimizing Near Duplicate Detection for peer-to-peer networks



Further details (II)
• Extensions presented in the paper

– Video linkage

• For practical reasons, users may break large videos
e.g., titanic.avi  titanic-part1.avi and titanic-part2.avi

• Use keyframes to conceptually split each video to 
smaller segments

• Expected number of segments configurable

• Each video segment is handled individually, w.r.t. 
indexing and query execution

• Discovering one segment sufficient for full linkage

• Experimental evaluation
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