
IPMicra: Toward a distributed and adaptable location
aware web crawler

Odysseas Papapetrou and George Samaras

University of Cyprus, Department of Computer Science,
75 Kallipoleos str., P.O. Box 20537, Nicosia, Cyprus

{cspapap, cssamara }@cs.ucy.ac.cy

Abstract. Distributed crawling has shown that it can overcome important limi-
tations of the centralized crawling paradigm. However, the distributed nature of
current distributed crawlers is currently not fully utilized. The optimal benefits
of this approach are usually limited to the sites hosting the crawler. In this work
we propose IPMicra, a distributed location aware web crawler that utilizes an IP
address hierarchy and allows crawling of links in a near optimal location aware
manner.

1 Introduction

The challenging task of indexing the web (usually referred as web-crawling) has been
heavily addressed in research literature. However, due to the current size, increasing
rate, and high change frequency of the web, no web crawling schema is able to pace
with the web. While current web crawlers managed to index more than 3 billion doc-
uments [4], it is estimated that the maximum web coverage of each search engine is
around 16% of the estimated web size [5].

Distributed crawling [7, 8, 6, 1–3] was proposed to improve this situation. However,
all the previous work was not taking full advantage of the distributed nature of the ap-
plication. While some of the previously suggested systems were fully distributed over
the Internet (many different locations), each web document was not necessarily crawled
from the most near crawler but from a randomly selected crawler. While the distribu-
tion of the crawling function was efficiently reducing the network bottleneck from the
search engine’s site and significantly improving the quality of the results, the previous
proposals were not at all optimized.

In this work, we propose an optimal, for the distributed crawlers, URL delegation
methodology, so that each URL is crawled from the nearest crawler. The approach,
called IPMicra, facilitates crawling of each URL from the nearest crawler (where near-
ness is defined in terms of network latency) without creating excessive load to the In-
ternet infrastructure. We use data from the four Regional Internet Registries (RIRs)
to build a hierarchical clustering of IP addresses, which assists us to perform an effi-
cient URL delegation to the migrating crawlers. In addition to location aware crawling,
IPMicra, provides load balancing taking into consideration the crawler’s capacity and
configuration. Furthermore, it dynamically adjusts to the changing nature of the Internet
infrastructure itself.



This short introduction is followed by a brief description on related work, giving
emphasis to UCYMicra, a distributed crawling infrastructure which we extend to per-
form location aware web crawling. We then introduce and describe location aware web
crawling. Section 4 describes and evaluates our approach toward location aware web
crawling, called IPMicra. Section 5 summarizes the advantages of IPMicra. Conclu-
sions and future work are presented in section 6.

2 Related work

While the hardware bottleneck is easily (but not cheaply) handled in the modern web
crawling systems with parallelization, the network bottleneck is not so easily elimi-
nated. In order to eliminate the delay caused by the network latency (occurred mainly
due to the network distance between the crawler and the target URLs), the modern
crawlers issue many concurrentHTTP/GETrequests. While this speeds up crawling, it
does not optimize the utilization of the still limited network resources, and the overhead
in hardware and network for keeping many threads open is very high. The network re-
sources are not released (in order to be reused) as fast as possible. Furthermore, in most
of the cases, the data is transmitted uncompressed (since most of the web-servers have
compression disabled), and unprocessed to the central sink (the search engine), thus, its
size is not reduced. Finally, the whole crawling process generates a big workload for
the whole Internet infrastructure, since the network packets have to go through many
routers (due to the big network distance of the crawler and the servers).

Realizing the limitations of centralized crawling, several distributed crawling ap-
proaches have been proposed [7, 8, 6, 1–3]. The new approaches are based in the con-
cept of having many crawlers distributed in the web, using different network and hard-
ware resources, coordinated from the search engine, sharing the crawling workload.
The crawlers sometimes run in the search engine’s machines [2, 3], sometimes in cus-
tomers’ machines [8, 7], and sometimes in third parties (normal Internet users) [6]. The
innovation in these approaches is that they mostly eliminate the network bottleneck in
the search engine’s site, since they reduce the size of the data transmitted to it (due to
data processing, compression, and filtering before transmission). As in the centralized
crawlers, distributed crawlers also issued many concurrentHTTP/GETrequests to min-
imize the network latency. However, as in the centralized crawling case, this approach is
not the optimal, neither for network utilization, nor for the Internet infrastructure. More
specifically, the distributed crawlers are forced to open many concurrent threads in order
to cover the network latency, thus, they require more hardware and network resources.
Furthermore, the network resources cannot be reused as fast as possible, since they are
not optimally released. Finally, increased load occurs in the Internet infrastructure since
theHTTP/GETs andHTTP/HEADs results are transmitted from the web servers un-
compressed, unprocessed, and unfiltered, over a long network distance, through many
routers, until they arrive in the distributed crawling points, for filtering and compression.
To remedy all these, we now propose a truly distributed location aware web crawling,
which minimizes the network latency in distributed crawling, speeds up the web crawl-
ing process, and also enables efficient load balancing schemes.



Fig. 1.UCYMicra basic components

2.1 The UCYMicra System

UCYMicra [7, 8] was recently proposed as an alternative to distributed web crawling.
Realizing the limitations of the centralized web crawling systems and several other
distributed crawling systems we designed and developed an efficient distributed web
crawling infrastructure, powered from mobile agents. The web crawlers were con-
structed as mobile agents, and dispatched to collaborating organizations and web servers,
where they performeddownloading of web documents, processing and extraction of
keywords, and, finally, compression and transmissionback to the central search engine.
Then, the so-called migrating crawlers remained in the remote systems and performed
constant monitoring of all the web documents assigned to them for changes.

More specifically, the original UCYMicra consists of three subsystems, (a) the Co-
ordinator subsystem, (b) the Mobile Agents subsystem, and (c) a public Search Engine
that executes user queries on the database maintained by the Coordinator subsystem.

The Coordinator subsystem resides at the Search Engine site and is responsible for
administering the Mobile Agents subsystem (create, monitor, kill a migrating crawler),
which is responsible for the crawling task. Furthermore, the coordinator is responsi-
ble for maintaining the search database with the crawling results that it gets from the
migrating crawlers.

The Mobile Agents subsystem is divided into two categories of mobile agents; the
Migrating Crawlers (or Mobile Crawlers) and the Data Carries. The former are respon-
sible for on-site crawling and monitoring of remote Web servers. Furthermore, they
process the crawled pages, and send the results back to the coordinator subsystem for
integration in the search engine’s database. The latter are responsible for transferring



the processed and compressed information from the Migrating Crawlers back to the
Coordinator subsystem. Figure 1 illustrates the high-level architecture of UCYMicra.

The UCYMicra paradigm was easily received by the users, and was appreciated
and tempting to the web server administrators, since it could offer a quality-controlled
crawling service without security risks (they could easily and efficiently set security and
resource usage constraints). Actually, the use of UCYMicra was twofold. Powered from
the portability of the mobile agents’ code, the UCYMicra crawlers could easily be de-
ployed and remotely administered in an arbitrary number of collaborating machines
and perform distributed crawling in machines’idle time (similar to the seti@home
approach [9]). Further on, the crawlers could be deployed in high-performance ded-
icated machines controlled from the search engine company, for performing efficient
distributed crawling with very little communication overhead.

Due to its distribution, UCYMicra was able to outperform other centralized web
crawling schemes, by requiring at least one order of magnitude less time for crawling
the same set of web pages [8, 7]. The processing and compression of the documents
to the remote sites was also important, since this reduced the data transmitted through
Internet back to the search engine site, and also eliminated the processing and network
bottlenecks. Furthermore, UCYMicra not only respected the collaborating hosts (by
working only when the resources were unused) but also offered quality crawling - al-
most like live update- to the servers hosted in the collaborating companies (a service
usually purchased from the search engines).

3 Location aware web-crawling

Location aware web crawling is distributed web crawling that facilitates the delega-
tion of the web pages to the ‘nearest’ crawler (i.e. the crawler that would download
the page the fastest).Nearnessand locality are always in terms of network distance
(latency) and not in terms of physical (geographical) distance. In order to find the near-
est crawler to a web server we useprobing. Experiments showed that the traditional
ICMP-ping tool, or the time that takes for a HTTP/HEAD request to be completed,
are very suitable for probing. In the majority of our experiments, the crawler with the
smallest probing time was the one that could download the web page the fastest. Thus,
the migrating crawler having the smallest probing result to a web server is possibly the
crawler most near to that web server.

Evaluatinglocation awareweb crawling, and comparing it with distributedloca-
tion unawareweb crawling (e.g. UCYMicra) was actually simple. UCYMicra was en-
hanced and, via probing, the URLs were optimally delegated to the available migrating
crawlers. More specifically, each URL was probed fromall the crawlers, and then dele-
gated to the ‘nearest’ one. Location aware web crawling outperformed its opponent, the
“unaware” UCYMicra, which delegated the various URL randomly, by requiringone
order of magnitude less time (1/10th)to download the same set of pages, with the same
set of migrating crawlers and under approximately the same network load.



4 The IPMicra System

While location-aware web crawling significantly reduces the download time, building a
location aware web crawler is not trivial. In fact, the straight-forward approach toward
location aware web crawling requires each URL to be probed (i.e.ping )from all the
crawlers, in order to find the most near web crawler to handle it. Thus, extensive probing
is required, making the approach impractical. The purpose of IPMicra is to eliminate
this impracticality. IPMicra specifically aims in reducing the required probes for dele-
gating a URL to the nearest crawler. We designed and built an efficient self-maintaining
algorithm for domain delegation (not just a URL) with minimal network overhead by
utilizing information collected from the Regional Internet Registries (RIRs).

Regional Internet Registriesare non-profit organizations that are delegated the task
of handling IP addresses to the clients. Currently, there are four regional Internet Reg-
istries covering in the world: APNIC, ARIN, LACNIC, and RIPE NCC. All the sub-
networks (i.e. the companies’ and the universities’ sub-networks) are registered in their
regional registries (through their Local Internet Registries) with their IP address ranges.
Via the RIRs a hierarchy of IP ranges can be created. Consider the IP range starting
from the complete range of IP addresses (from 0.0.0.0 to 255.255.255.255). The IP ad-
dresses are delegated to RIRs in large address blocks, which are then sub-divided to
the LIRs (Local Internet Registries); lastly they are sub-divided to organizations, as IP
ranges, called subnets.

The IPMicra system is architecturally divided in the same three subsystems that
were introduced in the original UCYMicra: (a) the public search engine, (b) the coor-
dinator subsystem, and (c) the mobile agents subsystem. Only the public search engine
remains unchanged. The coordinator subsystem is enhanced for building the IP hierar-
chy tree and coordinating the delegation of the subnets, and the migrating crawlers are
enhanced for probing the sites and reporting the results back to the coordinator.

4.1 The IP-address Hierarchy and Crawlers placement

The basic idea is the organizing of the IP addresses, and subsequently the URLs, in
a hierarchical fashion. We use theWHOISdata collected from the RIRs to build and
maintain a hierarchy with all the IP ranges (IP subnets) currently assigned to organiza-
tions (e.g., see figure 2). The data, apart from the IP subnets, contains the company that
registers each subnet. Our experience shows that the expected maximum height of our
hierarchy is 8. The required time for building the hierarchy is small, and it can be easily
loaded in main memory in any average system. While the IP addresses hierarchy does
not remain constant over time, we found out that it is sufficient to rebuild it every three
months, and easy populate it with the old hierarchy’s data.

Once the IP hierarchy is built, the migrating crawlers are sent to affiliate organi-
zations. Since the IP address of the machine that will host the crawler is known, we
can immediately assign that subnet to the new crawler(e.g., crawler X is hosted by a
machine belonging to subnet 11). In this way the various crawlers populate the hierar-
chy. The hierarchy can now be used to efficiently find the nearest crawler for every new
URL, utilizing only a small number of probes. The populated hierarchy also enables
calibrating and load-balancing algorithms (described later) to execute.



Fig. 2. A sample IP hierarchy. Subnets 11 and 13 belong to company 1 and company 2 respec-
tively. Subnets 11 and 13 are assigned to crawlers X and Y respectively

Updating the IP-address hierarchy is not difficult either. When we detect significant
changes in the hierarchy data collected from the RIRs we rebuild the hierarchy from
scratch (in our testing, rebuilding the hierarchy once a month was sufficient). Then, we
pass the data from the old hierarchy to the updated one, in order to avoid re-delegations
of already delegated URLs, and continue the algorithm execution normally. Any invalid
re-delegations (i.e. important changes in the underlying connectivity of a web server or
a web crawler), will be later detected, and the hierarchy will be calibrated (described
later).

4.2 Probing

Since the introduction of classless IP addresses, the estimation of the network distance
between two Internet peers, and subsequently, location aware web crawling, cannot be
based in the IP addresses. For example, two subsequent IP addresses may reside in two
distant parts of the planet, or, even worse, in the same part, but with very high network
latency between. Therefore we needed an efficient function to estimate the network
latency between the crawlers and the web-servers hosting the URLs.

Experiments showed that the traditional ICMP-ping tool, or the time that takes for
a HTTP/HEAD request to be completed, are very suitable for probing. In the majority
of our experiments (91% with ping and 92.5% when using HTTP/HEAD for probing),
the crawler with the smallest probing time was the one that could download the web
page the fastest. Thus, the migrating crawler having the smallest probing result to a
web server is possibly the crawler most near to that web server.

Probing threshold: During the delegation procedure (described in detail in sec-
tion 4.3) we consider a crawler to be suitable to get a URL if the probing result from
that crawler to the URL is less than a threshold, calledprobing threshold. Probing
threshold is the maximum acceptable probing time from a crawler to a page and it is
set by the search engine’s administrator depending on the required system accuracy. In
simple terms we can see the probing threshold as our tolerance on non-optimal dele-
gation. During our experiments we found a probing threshold set to 50msec to give a
good ratio of accuracy over required probes.



4.3 The URL Delegation Procedure

Based on the assumption that the sub-networks belonging to the same company or or-
ganization are logically (in terms of network distance) in the same area, we use the
organization’s name to delegate the different domains to the migrating crawlers. In fact,
instead of delegating URLs to the distributed crawlers, we delegate subnets. This is
done in alazy evaluationmanner, that is, we try to delegate a subnet only after we find
one URL that belongs to that subnet.

We first find thesmallestsubnet from the IP hierarchy that includes the IP of the
new URL, and check if that subnet is already delegated to a crawler. If so, the URL
is handled from that migrating crawler. If not, we check whether there is another sub-
net that belongs to the same company and is already delegated to a migrating crawler
(or more). If such a subnet exist, the new URL, and subsequently, the owning subnet,
is delegated to this crawler. If there are more than one subnets of the same company
delegated to multiple crawlers then the new subnet is probed from these crawlers and
delegated to the fastest. In fact, we stop as soon as we find a crawler that satisfies the
probing threshold(section 4.2).

Only if this search is unsuccessful, we probe the subnet with the migrating crawlers,
in order to find the best one to take it over. We navigate the IP-address hierarchy bottom
up, each time trying to find the most suitable crawler to take the subnet. We first discover
the parent subnet and find all the subnets included in the parent subnet. Then, for all the
sibling subnets that are already delegated, we sequentially ask their migrating crawlers,
and the migrating crawlers of their children subnets to probe the target subnet, and
if any of them has probing time less than a specific threshold (probing threshold), we
delegate the target subnet to that crawler. If no probing satisfies the threshold, our search
continues to higher levels of the subnets tree. In the rare case that none of the crawlers
satisfies the probing threshold, the subnet is delegated to the crawler with the lower
probing result.

The algorithm (see pseudo-code below) is executed in the coordinator subsystem.

for any newly discovered URL u {
subnet s = smallestNonUnary(u);
if (IsDelegated(s)){ // the subnet is delegated

delegate u, s to the same migrating crawler;
next u;

}
elseif (sameCompanySubnetDelegated(s.companyName)){
// a subnet of the same company is delegated

mc = migrating crawler that has the other subnet;
mc.delegate(u, s) //the url and the subnet

} else {
while (s not delegated) {

s = s.parent;
if (IsDelegated(s)) { // check the parent

mc = the migrating crawler that has subnet s;
time = mc.probe(u);
if (time<threshold)

mc.delegate(u, s); //the url and the subnet



}

for every child of s until u is delegated {
sch = s.child
if (IsDelegated(sch)) { // check the child

mc = migrating crawler that has subnet sch;
time = mc.probe(u);
if (time<threshold)

mc.delegate(u, s)
}
if (allAvailableCrawlersProbed)

delegate the subnet to the fastest crawler
}

}
}

}

A URL delegation example:For clarity purposes an example is in order. The ex-
ample references the IP address hierarchy presented in figure 2.

Subnet 2 in figure 2 has an IP range from 12.0.0.1 to 18.255.255.255. Subnet 8 is
included in subnet 2 with an IP range from 14.0.0.1 to 16.255.255.255. Subnet 12 is a
unary subnet for IP 15.10.0.7. The scenario includes probing for a URL that resides to
IP 15.10.0.7. Querying the IP addresses hierarchy, we discover that the smallest subnet
including the target IP is subnet 12, which however is unary. Thus, according to our
algorithm, we ignore subnet 12, and use subnet 8 instead. Subnet 8 is not delegated in
any crawler, so we check to see if any other subnet belonging to the same company is
already delegated to any crawler. Assuming that no other subnet of the same company is
delegated (organization name is stored in every node in the hierarchy), we continue by
checking for neighbouring subnets that are delegated. Looking again in our hierarchy,
we discover that while subnet 8 is not delegated to any crawler yet, subnets 11 and 13
(its children) are delegated to two different crawlers, x and y respectively. Therefore,
we ask these two crawlers to probe the new subnet. If probing in either of the two
crawlers’ results in time less than the probing threshold, we delegate the new subnet
to that crawler, or else we proceed to higher levels of hierarchy. However, since in this
scenario, subnet 12 is a unary subnet, we delegate both subnets 8 and 12 to the faster
crawler. Since the subnets 11 and 13 are already delegated and are lower in the hierarchy
than subnet 8, this does not affect them (their delegation supersedes the delegation of
their father). Subnet 14, which is not yet delegated, stays un-delegated. If we need to
delegate it in the future, we run the same algorithm until we find some crawler satisfying
the probing threshold.

4.4 Load balancing and dynamic calibration

Our algorithm performs dynamic calibration of the URLs in order to follow the vastly
changing Internet infrastructure. More specifically, the time required for each network
action for each URL (i.e.HTTP/GET) is compared with the previous counts/statistics
for the same URL. If the time is sufficiently larger (a threshold defined from the search



engine administrator) than the time demanded for the previous downloads of the same
page, and if this repeats for more than one time continuously, then the subnet is re-
delegated, so that a more suitable crawler is found. In this way, with negligible pro-
cessing, and no extra network overhead, the algorithm dynamically detects changes and
calibrates the URL delegations.

IPMicra also performs efficient load-balancing. Each crawler has a maximum ca-
pacity, the size of the assigned web-pages that the crawler has to check each day. In the
case where a crawler gets overloaded, the coordinator removes the subnet(s) with the
lower variance in their probing results (collected during their delegation, and stored in
the coordinator), and delegates them to the next-best available crawler. Intuitively, small
probing time variance implies that most of the probed crawlers have similar probing re-
sults, thus, we expect to be easily able to find a near optimal crawler to take over a page.
This heuristic performs well, and was preferred over other studied approaches (i.e. lin-
ear programming) due to the simplicity in implementation. Our tests showed that this
heuristic was performing optimal decisions in more than 2/3 of the cases. Furthermore,
in all the rest cases the heuristic was able to find an acceptable solution. Unfortunately,
due to space limitations we cannot present analytical results of our experiment here.
While satisfied with this heuristic, part of our ongoing work is to apply and evaluate
other load balancing algorithms.

4.5 Performance and Evaluation

We performed a two-phase evaluation and repeated each experiment several times to
get statistical significance.

The first evaluation phase involved three experiments, with four coordinating crawlers,
hosted from affiliated universities in four distinct geographical locations. The experi-
ments included distributed crawling of 1000 distinct domain names, using four different
variations: (a) Location unaware distributed crawling i.e. UCYMicra, (b) Optimal loca-
tion aware distributed crawling, and, (c) IPMicra. Location unaware distributed crawl-
ing was performed with an enhanced version of UCYMicra, which was performing a
random delegation of the URLs to the crawlers. The optimal location aware distributed
web crawling was performed from another version of UCYMicra, which probed (with
HTTP/HEAD) each URL from all the crawlers prior each delegation, and delegated
each URL to the most near crawler (this was approaching the theoretically optimal lo-
cation aware delegation). IPMicra was also executed in the same setup, as described
before. However, since IPMicra’s performance depends on the probing threshold, we
experimented with many different thresholds (25msec to 125msec). We found a thresh-
old set to 50msec with HTTP/HEAD as the probing function to give a good ratio of
(accuracy:#required probes). Setting the threshold to a lower value i.e. 25msec was re-
sulting to much higher accuracy (more than 90% optimal delegations) but required more
probes for each delegation.

We found that location aware web crawling requiredone order of magnitude less
time (average 1/10th)in the downloading process from the location-unaware version.
The case was very similar with IPMicra, which also required one order of magnitude
less time (with probing threshold set to 50msec and using HTTP/HEAD for probing



Fig. 3. IPMicra compared to the optimal location aware, the random, and the worst-case dis-
tributed crawling (1000 sites and 4 crawlers)

function) compared to location unaware web crawling. The evaluation results are illus-
trated in figure 3 (the worst-case scenario is the case where each URL is assigned to the
farthest crawler). Note that even with only four crawlers the benefits are tremendous.
In fact, as the number of crawlers increases the benefits increase as well. We expect the
IP-address hierarchy to be instrumental in identifying the optimal number of crawlers
for optimal location aware crawling.

At the second evaluation phase, we included 12 crawlers (hosted in affiliated organi-
zations and universities world-wide) and 1000 randomly selected URLs - different than
the previous. This experiment was to evaluate the accuracy of IPMicra in performing
a location aware delegation, and the required probes for doing so. In this experiment,
IPMicra was able to propose an optimal delegation in most of the URLs, by requiring
very few probes. More specifically, with a probing threshold set to 50msec, IPMicra
managed to perform the optimal delegation in 75% of the URLs, and required an av-
erage of only 3 probes per URL, compared to 12 needed for the brute-force approach
presented in Section 3. With a probing threshold set to 25msec, IPMicra’s accuracy was
reaching to 90% accuracy (90% of the URLs were assigned in the nearest of the 12
crawlers), and required 6,5 probes for each URL. It is worth noting however that in all
our experiments, the sub-optimal delegations were very near to the optimal ones, and
always much better than a random delegation (from the delegation algorithm, one can
realize that the maximum probing of any proposed non-optimal delegation was equal to
the probing threshold, which however was significantly low in all cases). The effects of
the probing threshold are illustrated in figure 4.

The adaptive/learning nature of IPMicra:In all our experiments, IPMicra was get-
ting calibrated-optimized in the course of time, by facilitatinga priori knowledge. For
example, while the average number of probes for all the sites (phase 2 of the evaluation,
with 12 crawlers) was 3 probes per URL, the average probing for the last 50 URLs
was only 2.66 probes per URL. The fact that more delegations were performed in the



Fig. 4.Experimenting with probing threshold (25msec and 50msec), 12 crawlers and 1000 URLs

Fig. 5.The adaptive nature of IPMicra - Number of required probes per URL with probing thresh-
old set to 50msec (for 1000 sites crawled from 6 and 12 crawlers)

IPMicra hierarchy - the hierarchy was gettingtrained/calibrated- was helping IPMicra
to focus to the optimal crawler with less probes. The results of the previous experiment
(with 6 and 12 crawlers) are also illustrated in graph 5. It is very important that the
(linear) trendline in the graph is reducing, meaning that the required probes for each
URL are also getting reduced in the course of time.

5 Advantages of IPMicra

IPMicra has several advantages inherited from the mobile agents model, and its pre-
decessor, UCYMicra. Furthermore, it supports load balancing and near optimal URL
delegation. More specifically, IPMicra provides the following advantages:

1. Location aware crawling. It delegates the web sites to near migrating crawlers in
order to take advantage of the lower network latency for faster crawling



2. IPMicra makes better use of the available bandwidth. While location unaware web
crawlers (distributed or not) were trying to get over the network latency and in-
crease the crawling rate by employing multiple crawling threads, the available
bandwidth was not fully utilized and was always a bottleneck. Location aware web
crawling needs less time to download a web document and releases network re-
sources faster. Just by re-arranging the delegation of the URLs to the nearest web
crawlers, we can complete the crawling function more efficient. Therefore, we ex-
pect to avoid the network bottleneck during crawling.

3. Load balancing. It uses an efficient load balancing scheme for URL delegation and
re-delegation to alleviate bottlenecks in the migrating crawlers.

4. IPMicra eliminates the need of the traditional centralized web-crawlers, since the
new crawling paradigm can follow newly found links and performs efficient load
balancing.

5. IPMicra introduces less overall load in the Internet infrastructure, since importantly
less data is transmitted uncompressed over the Internet. The distance that the un-
compressed data has to be transmitted (between the web-servers and the distributed
crawlers) is less or the two Internet points are connected with high bandwidth.

6. IPMicra has the important advantage of becoming dynamically calibrated in the
course of time, for more focused (with less probes) searching for the nearest crawler.
Moreover, the system also detects important changes of the Internet’s underlying
network structure, and easily adjusts to them, to keep optimal delegations

Being distributed, IPMicra also inherits the advantages of distributed crawling. More
specifically, not only it eliminate the enormous processing bottleneck from the search
engine’s site, by delegating the processing task to the migrating crawlers, but also it
performs remote processing and compression (to the migrating crawlers) prior transmit-
ting the results back to the search engine. The latter results to a significant reduction of
the data transmitted back to the search engine’s site (as in UCYMicra, we transmitless
than 1/20thof the changed crawled data [7, 8]), without loosing any search-useful infor-
mation. Also, useless conditional GETs(If-Modified-Since headers) andHEAD
requests do not any more occupy network resources from the search engine’s site, but
are executed distributed. Moreover, due to the flexibility of the mobile agents paradigm,
the whole system is upgradeable at real time, and uses negligible network resources for
coordination. At the end, it is very promising and easily acceptable from the users, due
to the security constraints that can be set to the migrating crawlers, and since it can offer
a fully configurable crawling service for the web server administrators(similar services
are currently sold from commercial search engines).

6 Conclusions

In this work, we proposed IPMicra, an extension of UCYMicra, that allows, based on
the notion of ‘nearness’, crawling of links in a near optimal location aware manner.
The motivating power behind IPMicra is an IP address hierarchy tree, which is build
using information from the four Regional Internet Registries. This hierarchy is used to
delegate the web sites to near migrating crawlers in order to take advantage of the lower
network latency for faster crawling.



IPMicra significantly improves the performance of distributed crawling by requiring
one order of magnitude less time from a location unaware distributed crawler to crawl
the same set of web pages. The performance is achieved just by re-arranging the URL
delegations to the nearest crawlers. IPMicra also enables efficient load-balancing with
negligible overhead.

This work can offer an efficient and generic solution to todays web indexing prob-
lem. We view this work as an important step toward a truly distributed and scalable web
crawler, that will be able to catch up to the expanding and rapidly changing web. The
location aware infrastructures developed in this work can be applied (as a framework)
in any (fully or partially) distributed web crawler. The framework can even be applied
in existing commercial approaches, like the Google Search Appliance or Grub. Further-
more, it can facilitate optimizations for distributed applications in the Internet in gen-
eral. For example, this framework can efficiently enhance the load balancing schemes
used from content delivery networks, such as Akamai.

References

1. C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, and Michael F. Schwartz.
The Harvest information discovery and access system.Computer Networks and ISDN Sys-
tems, 28(1–2):119–125, 1995.

2. Jan Fiedler and Joachim Hammer. Using the web efficiently: Mobile crawlers. InProceedings
of the Seventeenth AoM/IAoM International Conference on Computer Science, pages 324–
329, San Diego CA, 1999. Maximilian Press Publishers.

3. Joachim Hammer and Jan Fiedler. Using mobile crawlers to search the web efficiently.Inter-
national Journal of Computer and Information Science, 1(1):36–58, 2000.

4. Google Inc. Google, September 2003. http://www.google.com/.
5. S. Lawrence and C. Lee Giles. Accessibility of information on the web.Nature,

400(6740):107–109, July 1999.
6. LookSmart Ltd. Grub distributed internet crawler, 2003.
7. Odysseas Papapetrou, Stavros Papastavrou, and George Samaras. Distributed indexing of the

web using migrating crawlers. InProceedings of the Twelfth International World Wide Web
Conference (WWW), 2003.

8. Odysseas Papapetrou, Stavros Papastavrou, and George Samaras. Ucymicra: Distributed in-
dexing of the web using migrating crawlers. InProceedings of the 7th East-European Con-
ference on Advanced Databases and Information Systems, Dresden, Germany, 2003.

9. SETI. Search for extra terrestrial intelligence, January 2004.


