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Abstract

Bloom filter based algorithms have proven successful as
very efficient technique to reduce communication costs of
database joins in a distributed setting. However, the full
potential of bloom filters has not yet been exploited. Espe-
cially in the case of multi-joins, where the data is distributed
among several sites, additional optimization opportunities
arise, which require new bloom filter operations and com-
putations. In this paper, we present these extensions and
point out how they improve the performance of such dis-
tributed joins. While the paper focuses on efficient join
computation, the described extensions are applicable to a
wide range of usages, where bloom filters are facilitated for
compressed set representation.

1 Introduction

In a distributed database setting, joins are expensive op-

erations, especially with respect to communication costs.

Assume that we want to compute S � T at the site hold-

ing T , called master site. Basic join algorithms require that

all tuples in S (or at least a vertical subset of them) are sent

to the master site, where the actual join computation, - the

intersection between T and S based on the join condition -

takes place.

Instead of sending the actual data, it is sufficient to send

a compressed form of the set of tuples forming S , with just

enough information to test set membership. For this, bloom

filters are the ideal choice.

Bloom filters The Bloom filter data structure was pro-

posed in [4], as a space-efficient representation of sets S =
{e1, e2, e3 . . . en} of n elements from a universe U. A bloom

filter consists of an array of m bits and a set of k independent

hash functions F = { f1, f2 . . . fk}, which hash elements of U
to an integer in the range of [1,m]. The m bits are initially

set to 0 in an empty bloom filter1. An element e is inserted

1We use the expressions ‘A bit is set to true/false’ and ‘A bit is set to

1/0’ interchangeable.

into the bloom filter by setting all positions fi(e) of the bit

array to 1.

Bloom filters allow membership queries without the

need of the original collection. For any given element

e ∈ U, we can conclude that e is not present in the origi-

nal collection if at least one of the positions computed by

the hash functions of the bloom filter points to a bit which

is set to 0. However, bloom filters allow false positives;

due to hash collisions, it is possible that all bits represent-

ing a certain element have been set to 1 by the insertion of

other elements. The probability that such a membership test

yields a false positive is P( f alse− positive) ≈ (1− e−kn/m)k.

The information density of a bit filter is optimal when the

probability of each bit to be set is 1/2. For a bloom filter,

this is the case when setting the number of hash functions

to k ≈ m
n ∗ ln(2).

Bloom filters have gained a wide spectrum of applica-

tions, including cache management [11], routing in peer-to-

peer systems [14], novelty estimation in P2P [2], and queue

management [7]. A recent survey can be found in [6].

Since their invention, several extensions to bloom fil-

ters have been proposed. Mitzenmacher [19] shows how

to compress bloom filters optimally. Chazelle et al. [8] pro-

pose the bloomier filters which enable any kind of function

to be represented with bloom filters, not only the member-

ship function. Fan et al. [11] introduced counting bloom
filters, which allow to manage insertions and deletions of

elements. Spectral bloom filters take this one step further

and introduce variable-length counters, allowing arbitrarily

large counters for set elements [10]. Another approach to

multiset representation, the space-code bloom filter is de-

scribed in [13]. Finally, [12] presents dynamic bloom fil-
ters, which dynamically adapt their size to the number of

inserted elements.

Bloom filter based joins The first hash-based join algo-

rithm has been described in [1]. The simple hash-join works

as follows: Suppose we want to compute S � T , where

S is the smaller relation. S is called the building rela-

tion, because all tuples from S are added to a main memory
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hash table2. Then, each tuple from T (the probing relation)

is accessed and used to probe this hash table. If probing

succeeds, a new result tuple is created. In most cases the

hashing join algorithms perform better than other join algo-

rithms such as the sort-merge join [21, 17].

To reduce communication costs in a distributed setting,

a semi-join stage can be applied before the actual join [3].

Suppose siteS is holding S , siteT holds T , and the join con-

dition is S .a = T.b. Then, siteS first sends just πa(S ) to

siteT . siteT sends back all tuples from T for which prob-

ing succeeded to siteS , where the final join is computed. If

the join condition is highly selective, this can save signifi-

cant communication costs, because only small fractions of

tuples of S need to be transmitted.

The Bloomjoin algorithm [5, 18] reduces the amount of

data transmitted further by encoding πa(S ) in a bloom fil-

ter. It proceeds as follows: First siteS produces a bloom

filter BFS , including the join key S .a for all its records. The

bloom filter BFS is then sent to siteT , and used for filter-

ing the records of T that do not satisfy the join, i.e., T.b is

not included in BFS . The rest of the records are then sent

to siteS , where the actual join can occur, and any false posi-

tives can be filtered. [18] shows that Bloomjoin consistently

outperforms the basic semi-join algorithm.

Mullin [20] points out that this two-stage join only saves

costs when the filtering at siteT does filter a significant

amount of tuples, which is not always the case. He proposes

to extend the approach to a multi-stage process, where the

sites start with a very small bloom filter, and increase its

size until the additional costs for transmitting the bloom fil-

ter outweigh the gains.

Another approach includes Positionally Encoded Record

Filters (PERFjoin) [15]. Positionally Encoded Record Fil-

ters (PERFs) are bitvectors, encoding the matching records

in the backward direction of the 2-way semi-joins. Namely,

executing the R � S as S � R and following R � S
can be optimized in the following manner:(a) S projects

and sends the join attributes to R, (b) R uses the order pro-

posed from S for constructing a bitvector, where it sets the

bits to 1 if the respective record in S should be included

in the relation. The original approach can also be used as

an extension to the bloom join technique, for eliminating

all false positives. The authors show clear network gains

over naively implemented two-way semijoins that transmit

the whole relation instead of only the join attributes. The

approach however is beneficiary only in cases of very low

selectivity, because traditional compression proposed in the

paper has poorer performance than the original bloom filter

technique in the other cases. Also it cannot give benefit in

cases where the join attributes are bigger than the integer

length (i.e. strings).

Based on these techniques, algorithms to optimize multi-

2we use the terminology of [22].

join query plans have been devised. [9] shows how to com-

bine joins and semi-joins to minimize network transmission

costs of the distributed execution. [23] presents an algo-

rithm for minimizing response times. [16] focuses on op-

timizing the total processing cost of all sub-queries at the

database nodes.

These works on query planning for distributed joins take

bloom filter-based transmission for granted. However, a

closer look shows that it is possible to improve the query

execution efficiency further by optimizing the bloom filters

exchanged between sites. This is especially true if sites

cache bloom filters used for distributed joins. We present

such optimization opportunities in three areas:

• While the optimal bloom filter size has been deter-

mined for a two-site join [20], the situation becomes

more complex when bloom filters from several sites

need to be combined at one master site. We show how

to pre-compute error probabilities for composed bloom

filters, and point out how this affects the optimal bloom

filter size.

• When pipelining the bloom filter based set intersec-

tion, in many cases the number of items in the set

decreases significantly. We show how bloom filter

size can be reduced efficiently without re-hashing;

this allows intermediate sites to optimize the size of

the bloom filter they forward to the next site in the

pipeline.

• To determine the optimal order of joins, the master

site needs to know (or to estimate) the join selectiv-

ity at each site. While it is possible to ask each site

for this data, a master site can estimate it efficiently if

the respective bloom filters for the join condition are

already available. We show how to estimate the size of

a set from the number of ’1’ bits in the corresponding

bloom filter. This allows estimating the selectivity of a

join based on the conjunction of the respective bloom

filters.

It is interesting to note that these optimizations can be

applied directly to any distributed querying algorithm based

on semi-joins.

In the following, we consider only natural joins, i.e., join

conditions of the form S .a = T.a. The extension to arbi-

trary equality conditions is straightforward. Joins with non-

equality conditions cannot be optimized using bloom filters,

and therefore are not taken into consideration.

2 Bloom Filter Composition Operations

Motivation Suppose we have sites siteP1 · · · sitePm col-

lecting person information (in a table PERSON(ID, NAME,
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· · ·), and other sites siteQ1 · · · siteQn collecting publication

information (in tables PUBLICATION(ID, TITLE, DATE,

· · ·), AUTHOR(PERS ID, PUB ID). A typical query is to

select publications of authors with a specific name:(⋃
i=1···m σNAME=’Foo’(PERSONi)

)
�PERSON.ID=AUTHOR.PERS ID(⋃

i=1···n AUTHORi
)
�AUTHOR.PUB ID=PUBLICATION.ID(⋃

i=1···n PUBLICATIONi
)

Suppose, bloom filters BFπPERS ID(AUT HORi) are cached at

the master site. Then, an efficient distributed query plan

would execute the query as follows:

1. Retrieve bloom filters BFπID(σNAME=′Foo′ (PERS ONi)) from

sites sitePi

2. Compute the union of these bloom filters by bitwise

OR to BF∪PERS ON

3. Compute the union of AUT HORi.PERS ID by bit-

wise OR of the respective cached bloom filters to

BF∪AUT HOR

4. Compute the PERSON-AUTHOR semi-join by bit-

wise AND of BF∪PERS ON and BF∪AUT HOR to

BF(∪PERS ON)�(∪AUT HOR)

5. Send the resulting bloom filter to sites siteQi to com-

pute the join on PUBLICATION.

6. Collect the results, check for false positives, and merge

result tuples.

In general, we need bitwise AND to compute the in-

tersections required by joins, and bitwise OR to compute

unions in case of horizontal fragmentation. In both cases,

bloom filters facilitate the required unions and joins with

reduced network overhead. This applies even more when

bloom filters for foreign key attributes are cached at the

coordinating site. However, we need to take care that the

false-positive error rate is strictly controlled. This can only

be done by estimating error rates for the mentioned com-

position operations, and requesting (rsp. caching) bloom

filters of the appropriate size from participating sites.

In the following, we analyze the error probabilities for

computing set intersection and union by bitwise AND

rsp. OR of the involved bloom filters. The oper-

ators, while formally defined for only two bloom fil-

ters, are trivially extended for an arbitrary number of

parameters using recursion: op(BF1, BF2, . . . BFn) =

op(BF1, op(BF2, . . . (op(BFn−1, BFn)))).

Set union with bloom filters Computing the union of two

sets A and B based on their bloom filters BFA rsp. BFB is

only possible if BFA and BFB have the same size and share

the same hash functions. In this case, BFA∪B = BFA ∧ BFB,

where ∧ denotes bitwise OR.

Let us denote the error probability on bloom filter BF1

as Perror1
and the error probability on bloom filter BF2 as

Perror2
. Perror is calculated using the probability of any ran-

dom bit of the bloom filter to be set to 1. This probabil-

ity P(bit set to 1) is calculated based on the number of the

records already hashed to the bloom filter P(bit set to 1) =

1 −
(
1 − 1

m

)kn
. Then, Perror is the probability that all k

bits for a random record are set to 1, which equals to

Perror = P(bit set to 1)k.

So, Perror1
=

(
1 −
(
1 − 1

m1

)k1n1
)k1

and Perror2
=(

1 −
(
1 − 1

m2

)k2n2
)k2

and, as a prerequisite k1 = k2 = k

and m1 = m2 = m. We could try to similarly calcu-

late PerrorOR =

(
1 −
(
1 − 1

m

)knOR
)k

, where nOR is the num-

ber of records contained in BFOR(BF1,BF2). However, just

adding the number of records from BF1 and BF2 is not

accurate, since some records may exist in both the tables.

So, PerrorOR <=
(
1 −
(
1 − 1

m

)k(n1+n2)
)k

can serve as an upper

bound for the error probability PerrorOR .

A lower bound can also be derived for PerrorOR :

max(n1, n2) ≤ nOR ⇒ max(Perror1
, Perror2

) ≤ PerrorOR . Thus,

the error probability bounds are

max(Perror1
, Perror2

) ≤ PerrorOR ≤
1 −
(
1 − 1

m

)k(n1+n2)


k

If the distribution of the objects in the represented

sets is independent – the most frequent case –, we can

compute a better approximation by regarding the error

probability on bit-level. For a bit to be set in BFOR(BF1,BF2),

it has to be set either in BF1 or BF2 (or both). There-

fore, the probability P(bit set to 1, BFOR(BF1,BF2)) =

P(bit set to 1, BF1) + P(bit set to 1, BF2) −
P(bit set to 1, BF1) ∗ P(bit set to 1, BF2). The probability of

a bit to be true in BF1 is P(bit set to 1, BF1) = 1−
(
1 − 1

m

)kn1

.

Similarly, the probability for the same bit for BF2 is

P(bit set to 1, BF2) = 1 −
(
1 − 1

m

)kn2

. This gives us a

probability

P(bit set to 1, BFOR) =1 −
(
1 − 1

m

)kn1
 +

1 −
(
1 − 1

m

)kn2
 −

1 −
(
1 − 1

m

)kn1
 ∗

1 −
(
1 − 1

m

)kn2


Consequently, the error probability for BFOR(BF1,BF2) is
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Perror(BFOR(BF1,BF2)) =
1 −
(
1 − 1

m

)kn1
 +

1 −
(
1 − 1

m

)kn2
−

1 −
(
1 − 1

m

)kn1
 ∗

1 −
(
1 − 1

m

)kn2



k

This probability is less than Perror1
+ Perror2

and can be

approximated as

PerrorOR ≈ Max(2 ∗ Perror1
− P2

error1
, 2 ∗ Perror2

− P2
error2

)

Set intersection with bloom filters As with set union,

we assume that the involved bloom filters have the same

size and share their hash functions. Let nAND be the num-

ber of the objects in the set intersection. Then: nAND ≤
Min(n1, n2) ⇒ PerrorAND ≤ Min(Perror1

, Perror2
) (this follows

directly from the formula of Perror).

Again, for an independent object distribution a bet-

ter approximation is possible. In this case, the prob-

ability of a bit to be true in the combined bloom fil-

ter is P(bit set to 1, BFAND(BF1,BF2)) = P(bit set to 1, BF1) ∗
P(bit set to 1, BF2) =

((
1 −
(
1 − 1

m

)kn1
)
∗
(
1 −
(
1 − 1

m

)kn2
))k

.

This probability is significantly less than Perror1
and Perror2

.

3 Reduction of Bloom Filter Resolution

Motivation Suppose we want to compute R1 �R1.a=R2.a

R2 �R2.a=R3.a R3 �R3.a=R4.a R4. If the relations Ri are large

and the respective intersections are significantly smaller

than the relation sizes, it is beneficial to avoid the sending

of complete bloom filters BFRi.a to a coordinating site. In

that case, we would choose pipelined computation, and af-

ter each semi-join reduce the resulting bloom filter to its

optimal size before forwarding it:

1. compute BFR1.a at site1 (or use cached BF) and send it

to site2

2. site2 uses cached BFR2.a , adapts it to the size of BFR1.a

and computes BFR1�R2
= BFR1.a ∧ BFR2.a

3. site2 reduces size of BFR1�R2
to optimum and sends it

to site3

4. repeat semi-join computation until BFR1�R2�R3�R4
is

produced at site4

5. send back matching tuples of R4 to site3

6. compute R3 � R4 and send it to site2

7. repeat join computation until R1 � R2 � R3 � R4 is

produced at site1

While we could re-create a new bloom filter of optimal

size at each site, this is much more expensive than just com-

puting bitwise AND of the cached bloom filters, and then

reducing the bit array size without rehashing. For the lat-

ter, we need to (a) calculate the size satisfying our required

error probability, and (b) efficiently shrink the bit array.

We now describe our approach for reducing the reso-

lution of a bloom filter in the absence of the original col-

lection. For comparison purposes, we first describe the

naive approach based on mapping the large bloom filter to

a smaller one (i.e. using the modulo operation) and show

why this is not efficient.

Naive resolution reduction Assume we want to reduce a

large bloom filter BFof length l to a smaller BF′ of length

l′, where l/l′ is an integer. A simple mapping function like

f (x) = (x mod l′) can be used to map the bloom filter values

as well as the bloom filter functions to the smaller bloom

filter. BF’ is initialized with no bit set, and for each bit

BF[b] in the original bloom filter, if BF[b] is set, we set

BF′[b mod l′] in the reduced bloom filter.

For this approach, the new error probability is much

higher than the optimal probability for the same collection

represented by a bloom filter of the same length l′. In par-

ticular, assuming a uniform hashing, BF’ has an increased

error probability of P′( f alse positive) ≈ (1 − e−kn/S )k. Fig-

ure 1 shows the error probability for naive size reduction

and the optimal error probability for a sample bloom fil-

ter of size 32768, containing 400 objects. When this large

bloom filter is reduced to 0.125 of the original (i.e., to 4096

bits) the error probability caused by naive reduction is al-

ready 0.804, while the optimal error probability would have

been 0.007.

The problem is that the number of the hash functions

is not reduced with the size of the bloom filter. We know

that to achieve the optimal error probability, the number of

hash functions has to be chosen such that the density of the

bloom filter becomes 0.5. The reduction of such a bloom

filter to half its size already results in a density of approx-

imately 0.75. As the error probability grows exponentially

with bloom filter density, the naive approach leads quickly

to very high error probabilities. We show how to avoid this

in the next section

Block-partitioned bloom filters The key to reduced er-

ror probabilities is to allow adapting the number of hash

functions without the need to rehash all objects. This can

be achieved by composing the bloom filter from small, in-

dependent bloom filter blocks. Each of these blocks con-

tains all objects, hashed with different functions. Suppose

a block-partitioned bloom filter of size lmax, reducible to

a minimum size of lmin, is required. As first and second

blocks, bloom filters of size lmin, each with the optimized
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number of different hash functions are created, populated

with all objects, and concatenated. As third block, a bloom

filter of size 2 · lmin is populated, and appended. The process

continues until the size of the lmax is reached.

The reduction step for block-partitioned bloom filters is

trivial: to reduce the resolution of a given filter with Φ hash

functions to a size of 2ψ, we just take the ψ first bits and the
Φ

2χ−ψ first hash functions as new bloom filter.

Note that the approach is not limited to filter sizes of

2n. If other sizes are required, they can easily be formed

by concatenating block-partitioned bloom filters of different

sizes. In this case, the reduction step needs to extract the

respective reduced blocks from each of these filters, and re-

concatenate the extracted blocks.

While on the surface there seems to be a similarity be-

tween block-partitioned bloom filters and dynamic bloom

filters [12], the approaches are actually different. The pur-

pose of dynamic bloom filters is to grow, as more and more

objects are added. However, dynamic bloom filters can’t be

efficiently reduced. Block-partitioned bloom filters exhibit

exactly the opposite characteristic: they can be reduced eas-

ily, but it is not possible to add new blocks, because any

block needs to contain all objects.

Analysis: We sketch the analysis for finding the error

probability for block-partitioned bloom filters. The analysis

is restricted on filters of length lmax, where log2(lmax) is

an integer. As noted above, this poses no restriction on the

actual size.

The false positive error probability can be calcu-

lated recursively. A false-positive error occurs on

a block-partitioned bloom filter of length lmax when

both the last block and the remaining filter (each of

length lmax/2) return a false positive error. The solution

of the recursive equation P( f alse positive, length =

lmax) = P( f alse positive, length = lmax
2

)2

is P( f alse positive, length = lmax) =

P( f alse positive, length = lmin)lmax/lmin , where lmin is

the length of the smallest block, the basic building block

of the full bloom filter. Note that there is a lower limit

for lmin, the smallest block size; is it is too small, in the

worst case all its bits will be set to one, rendering it useless.

Therefore, lmin has to be chosen to satisfy the condition(
1 −
(
1 − 1

lmin

)kn
)k

 1.

Comparison: Figure 1 shows the false positive error

probabilities for naively reduced bloom filters and block-

partitioned ones, compared to the optimal size (if the objects

would be re-hashed). The graph is based on a sample bloom

filter of length lmax = 32768, containing 400 objects. The

initial number of hash functions is 57, the optimal number

for this setting. For practical issues the only the error rates

for reduction sizes between 512 and 8192 bits are shown.
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Figure 1. False positive error probabilities
with different bloom filter reduction tech-
niques

For larger reduction sizes, the difference between both ap-

proaches is not significant. The figure shows that naive

reduction causes extreme high error probabilities. On the

other hand, we see that block-partitioned bloom filters ex-

hibit a near-optimal error probability for all reduction sizes,

without requiring a rehashing of the original collection.

4 Estimation of Bloom Filter Set Size

Motivation Consider the case of the following query:

Q1 : R1 �R1.a=R2.a R2 �R2.a=R3.a R3 �R3.b=R4.b R4 �R4.b=R5.b

R5. In contrast to the previous scenarios, the joins occurring

in this query are based on more than one attribute (R1 to R3

are joined on a, R3 to R5 are joined on b etc.). For this type

of queries, bloom filters alone are not sufficient for filtering

all non-satisfying records. Instead, any evaluation of such

queries has to partially execute all sub-queries, then ex-

change a possibly large amount of possibly non-satisfying

records, and finally filter them (progressively or centrally in

a moderator). In our example, a possible query plan for Q1

is:

• Break the query into sub-queries SQ1,SQ2 . . . SQm
such that each sub-query has the maximum length of

joins with the same attribute. For Q1, that would be

SQ1 = R1 �R1.a=R2.a R2 �R2.a=R3.a R3 and SQ1 =

R3 �R3.b=R4.b R4 �R4.b=R5.b R5.

• Use cached bloom filters on the join attributes to com-

pute BFANDi bloom filters of each sub-query SQi, e.g.,

BFANDi = BFR1.a ∧ BFR2.a ∧ BFR3.a for sub-query SQ1.

• Attach BFAND1
, BFAND2

. . . BFANDm to the sub-queries,

and use pipeline computation to execute them.
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The above plans, although requiring significantly less

network transmissions than simple joins, can still be sub-

optimal. To increase efficiency as well as reduce transmis-

sion costs, we have to order the sub-query evaluation in the

pipeline so that the order of the sequential execution of the

joins reduces the size of intermediate result sets as early as

possible. For instance, if S Q1 in the above example would

result in only 1 record, it would be wise to first execute S Q1,

and then pipeline the 1 result record to the sub-query pro-

cessing. However, asking each of the sites for a count on the

number of local records that satisfy the whole query is not

feasible. Due to the different join attributes, the sites cannot

locally compute the number of records remaining after the

joins. Estimating the cardinality of each sub-query based on

the density of the joined bloom filters does not work either,

since each of the sub-queries may produce different bloom

filters sizes (i.e. by combining the optimizations already

proposed from section 3).

Therefore, we devised a formula to derive the estimated

object set size from a given bloom filter. Now, a moderator,

i.e. the query initiator, can first execute the semi-joins for

sub-queries SQi, and then use this formula to estimate join

selectivities from the resulting bloom filters BFANDi . The

joins are then ordered and executed based on these estima-

tions, analogous to the selectivity statistics used in central-

ized databases.

Set size estimation An estimation of elements hashed

into a bloom filter can be derived based on the bits set to

true in the bloom filter as follows.

Lemma 4.1 The expected number of true bits in a bloom
filter of length m with k hash functions after n elements were

hashed is: Ŝ (n) = m ∗
(
1 −
(
1 − 1

m

)kn
)
. Also, the following

inequalities hold:

Upper bound: The probability of the number of true bits
to be more than (1 + δ) ∗ Ŝ (n) is P(# true bits > (1 +

δ) ∗ Ŝ (n)|n) ≤ e−Ŝ (n)δ2/3.

Lower bound: The probability of the number of true bits
to be less than (1− δ) ∗ Ŝ (n) is P(# true bits < (1− δ) ∗
Ŝ (n)|n) ≤ e−Ŝ (n)δ2/2.

Proof Given a bloom filter of size m with k hash functions

and n elements hashed into it, we can compute the expected

number of true bits as follows. For this task, we define

the random variables Z1,Z2, . . .Zm where Zi is interpreted

to be the indicator variable for the event that the ith bit in

the bloom filter is set to true. The probability that the ith bit

is set to true is P(i = true) = 1−
(
1 − 1

m

)kn
. Having a bloom

filter of length m, the expected number of true bits equals to

Ŝ (n) =
∑m

i=1 P(i = true) = m ∗
(
1 −
(
1 − 1

m

)kn
)
. The bounds

follow directly from the Chernoff inequality, by assuming

(as is standard in the analysis of Bloom filters) that the ran-

dom variables Z1,Z2, . . .Zm are independent.

We now proceed to estimate the number of documents

hashed in a bloom filter. We denote by Ŝ −1(t) the inverse

of Ŝ (n), so that given a number of true bits t, Ŝ −1(t) returns

the number of documents that would result on an expected

number of t true bits in the bloom filter. We can find Ŝ −1(t)
using the probability of a bit to be true:

P(i = true) =
t
m
= 1 −

(
1 − 1

m

)kŜ −1(t)

⇒
(
1 − 1

m

)kŜ −1(t)

= 1 − t
m
⇒

k ∗ Ŝ −1(t) ∗ ln
(
1 − 1

m

)
= ln
(
1 − t

m

)
⇒

Ŝ −1(t) =
ln
(
1 − t

m

)
k ∗ ln

(
1 − 1

m

)

Ŝ −1(t) is the most likely number of hashed documents

given the state of the bloom filter, and can be used as a rough

estimate when a single number of hashed documents is re-

quired. However, strict error margins can only be derived

for intervals of set sizes. The following theorem provides

for a given interval the probability that the real set size is

indeed within the given bounds.

Theorem 4.2 Given a bloom filter BF of length m with k
hash functions and t bits set to true. For any nl, nr such that
Ŝ −1( t−1

2
) ≤ nl ≤ Ŝ −1(t − 1) and Ŝ −1(t + 1) ≤ nr, the number

of elements hashed in BF lies in the range (nl, nr) with a

probability of at least 1 − e−
(t−1−Ŝ (nl ))2

3Ŝ (nl ) − e−
(t+1−Ŝ (nr ))2

2Ŝ (nr ) .

Proof If the number of documents is n ≤ nl, then

P(# true bits ≥ t|n) ≤ P(# true bits ≥ t|nl). Choosing nl

and δl such that (1+ δl) ∗ Ŝ (nl) < t, we obtain by lemma 4.1

that this probability is P(# true bits > (1 + δl) ∗ Ŝ (nl)|nl) ≤
e−Ŝ (nl)δ

2
l /3. Similarly, if the number of documents is n ≥ nr,

then P(# true bits ≤ t|n) ≤ P(# true bits ≤ t|nr). Choos-

ing nr and δr such that (1 − δr) ∗ Ŝ (nr) > t, we ob-

tain by lemma 4.1 that this probability is P(# true bits <
(1 − δr) ∗ Ŝ (nr)|nr) ≤ e−Ŝ (nr)δ2r /2.

For choices of nl, δl, nr, δr as described above, we get that

with probability 1 − e−Ŝ (nl)δ
2
l /3 − e−Ŝ (nr)δ2r /2, the number of

documents is in the range (nl, nr). We compute a value for

δl such that (1 + δl) ∗ Ŝ (nl) < t. Clearly, δl =
t−1−Ŝ (nl)

Ŝ (nl)

satisfies the inequality. Similarly, we compute a value for δr

such that (1− δr) ∗ Ŝ (nr) > t. Clearly, δr =
Ŝ (nr)−t−1

Ŝ (nr)
satisfies

the inequality.
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We conclude that with probability 1 − e−
(t−1−Ŝ (nl ))2

3Ŝ (nl ) −
e−

(t+1−Ŝ (nr ))2

2Ŝ (nr ) , the number of documents is in the range (nl, nr).

Applications may need to ensure a certain confidence

that the estimation is correct. In this case, Theorem 4.2 can

also be used to compute upper and lower bounds of the set

size for a given error probability.

These size estimation results do also hold for set unions

created by bitwise OR of the respective bloom filters (cf.

Section 2). However, estimation of the size of an intersec-

tion represented by a bloom filters composed with bitwise

AND is not directly possible using theorem 4.2. The rea-

son is that the same bits may have been set in BF1 and

BF2 from two distinct objects, one belonging only to set

S 1 and the other only to S 2. The resulting sparsity of the

composite bloom filter will thus be incorrectly influenced.

The probability for such a bit collision is also quite high:

(1− (1− 1
m1

)k1n1 )∗ (1− (1− 1
m2

)k2n2 ). These bits would also be

set to 1 in the resulting BFAND, but no element from the real

intersection would set these bits in BFAND. Consequently,

our previously introduced estimation of elements becomes

incorrect. If BF1 and BF2 are still available, we can esti-

mate the size of the intersection indirectly by exploiting the

fact that |S 1 ∩ S 2| = |S 1|+ |S 2| − |S 1 ∪ S 2|. Thus, to estimate

the intersection of S 1 and S 2, we first compute their union,

and then derive the resulting estimation from the other three

given bloom filters.

5 Conclusions

This work includes three techniques which improve the

join efficiency in distributed query execution based on

Bloom filters. These techniques are based on three new op-

erations on bloom filters: a) creating set intersection and

union (and estimating their error probabilities) from given

bloom filters, b) reducing the resolution of a bloom filter

while maintaining a low error probability, and c) estimating

the number of elements that are hashed in a bloom filter.

Some of the scenarios for which the above operations are

useful are described in this paper. More scenarios are possi-

ble, in fact, each of the proposed operations can also be in-

tegrated in existing distributed query engines for improving

the performance of their query planning algorithms. Addi-

tionally, as bloom filters were already used in several ap-

plication domains ranging from distributed query execution

and web caching to P2P query routing and set reconcilia-

tion, we can imagine several enhancements to the existing

algorithms using our extensions.

Future work: Our next task will be to align our opti-

mizations in a fully distributed query execution engine. To

do this, we currently examine several approaches on pre-

computing bloom filters (e.g. for all indexed keys) and/or

caching them (e.g. for repeatedly occurring sub-queries), to

increase join performance. Some other issues are still open,

like where the bloom filters are stored and how they will be

updated. A further extension is comprehensive cost-based

query planning based on the estimations retrieved from the

bloom filters.
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