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Abstract. There exist a number of approaches for query processing
in Peer-to-Peer information systems that efficiently retrieve relevant in-
formation from distributed peers. However, very few of them take into
consideration the overlap between peers: as the most popular resources
(e.g., documents or files) are often present at most of the peers, a large
fraction of the documents eventually received by the query initiator are
duplicates. We develop a technique based on the notion of global docu-
ment occurrences (GDO) that, when processing a query, penalizes fre-
quent documents increasingly as more and more peers contribute their
local results. We argue that the additional effort to create and maintain
the GDO information is reasonably low, as the necessary information can
be piggybacked onto the existing communication. Early experiments in-
dicate that our approach significantly decreases the number of peers that
have to be involved in a query to reach a certain level of recall and, thus,
decreases user-perceived latency and the wastage of network resources.

1 Introduction

1.1 Motivation

The peer-to-peer (P2P) approach, which has become popular in the context of
file-sharing systems such as Gnutella or KaZaA, allows handling huge amounts of
data in a distributed and self-organizing way. In such a system, all peers are equal
and all of the functionality is shared among all peers so that there is no single
point of failure and the load is evenly balanced across a large number of peers.
These characteristics offer enormous potential benefits for search capabilities
powerful in terms of scalability, efficiency, and resilience to failures and dynamics.
Additionally, such a search engine can potentially benefit from the intellectual
input (e.g., bookmarks, query logs, etc.) of a large user community.

One of the key difficulties, however, is to efficiently select promising peers
for a particular information need. While there exist a number of strategies to
tackle this problem, most of them ignore the fact that popular documents are
typically present at a reasonable fraction of peers. In fact, experiments show
that often promising peers are selected because they share the same high-quality
documents. Consider a query for all songs by a famous artist like Madonna. If, as
in many of today’s systems, every selected peer contributes its best matches only,
you will most likely end up with many duplicates of popular and recent songs,
when instead you would have been interested in a bigger variety of songs. The
same scenario holds true in an information retrieval context where returning only



the k best matches for a query is even more common. Popular documents then
are uselessly contributed as query results by each selected peer, wasting precious
local resources and disqualifying other relevant documents that eventually might
not be returned at all. The size of the combined result eventually presented to
the query initiator (after eliminating those duplicates), thus, is unnecessarily
small.

1.2 Contribution

We propose a technique based on the notion of global document occurrences
(GDO) that, when processing a query, penalizes frequent documents increas-
ingly as more and more peers contribute their local results. The same approach
can also be used prior to the query execution when selecting promising peers for
a query. We discuss the additional effort to create and maintain the GDO infor-
mation and present early experiments indicating that our approach significantly
decreases the number of peers that have to be involved in a query to reach a
certain level of recall. Thus, taking overlap into account when performing query
routing is a great step towards the feasibility of distributed P2P search.

Section 2 gives an overview of related research in the different fields that we
touch with our work. Section 3 gives a short introduction on Information Re-
trieval basics necessary for the remainder of this paper. Section 4 presents the
architecture of MINERVA, our distributed P2P search engine that was used for
our experiments. Section 5 introduces the notion of GDO and discusses its ap-
plication at several stages of the querying process. Section 6 illustrates a number
of experiments to show the potential of our approach. Section 7 concludes and
briefly discusses future research directions.

2 Related work

Recent research on P2P systems, such as Chord [1], CAN [2], Pastry [3], P2P-Net
[4], or P-Grid [5] is based on various forms of distributed hash tables (DHTs)
and supports mappings from keys, e.g., titles or authors, to locations in a de-
centralized manner such that routing scales well with the number of peers in
the system. Typically, in a network of n nodes, an exact-match key lookup can
be routed to the proper peer(s) in at most O(log n) hops, and no peer needs to
maintain more than O(log n) routing information. These architectures can also
cope well with failures and the high dynamics of a P2P system as peers join or
leave the system at a high rate and in an unpredictable manner. However, the
approaches are limited to exact-match, single keyword queries on keys. This is
insufficient when queries should return a ranked result list of the most relevant
approximate matches [6].

In recent years, many approaches have been proposed for collection selection
in distributed IR, among the most prominent the decision-theoretic framework
by [7], the GlOSS method presented in [8], and approaches based on statistical
language models [9, 10]. [11] gives an overview of algorithms for distributed IR
style result merging and database content discovery. [7] presents a formal decision
model for database selection in networked IR. [12] investigates different quality
measures for database selection. [13, 14] study scalability issues for a distributed
term index. None of the presented techniques incorporates overlap detection into
the selection process.
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[15] describes a permutation-based technique for efficiently estimating set sim-
ilarities for informed content delivery. [16] proposes a hash-based synopsis data
structure and algorithms to support low-error and high-confident estimates for
general set expressions. Bloom [17] describes a data structure for succinctly rep-
resenting a set in order to support membership queries. [18] proposes compressed
Bloom filters that improve performance in a distributed environment where net-
work bandwidth is an issue.

[19] describes the use of statistics in ranking data sources with respect to a
query. They use probabilistic measures to model overlap and coverage of the
mediated data sources, but do not mention how to acquire these statistics. In
contrast, we assume these statistics being generated by the participating peers
(based on their local collections) and present a DHT based infrastructure to
make these statistics globally available.

[20] considers novelty and redundancy detection in a centralized, document-
stream based information filtering system. Although the technique presented
seems to be applicable in a distributed environment for filtering the documents
at the querying peer, it is not obvious where to get these documents from. In
a large-scale system, it seems impossible to query all peers and to process the
documents.

[21, 22] have also worked on overlap statistics in the context of collection se-
lection. They present a technique to estimate coverage and overlap statistics by
query classification and data mining and use a probing technique to extract fea-
tures from the collections. Expecting that data mining techniques will be very
heavy for the envisioned, highly-dynamic application environment, we adopt a
different philosophy.

In a prior work [23] we propose a Bloom filter based technique to estimate
the mutual collection overlap. While in this earlier work, we use Bloom filters
to estimate the mutual overlap between peers, we now use the number of global
document occurrences of the documents in a collection to estimate the contri-
bution of this collection to a particular query. These approaches can be seen as
orthogonal and can eventually be combined to form even more powerful systems.

3 Information Retrieval Basics

Information Retrieval (IR) systems keep large amounts of unstructured or weakly
structured data, such as text documents or HTML pages, and offer search func-
tionalities for delivering documents relevant to a query. Typical examples of
IR systems include web search engines or digital libraries; in the recent past,
relational database systems are integrating IR functionality as well.

The search functionality is typically accomplished by introducing measures
of similarity between the query and the documents. For text-based IR with
keyword queries, the similarity function typically takes into account the number
of occurrences and relative positions of each query term in a document. Section
3.1 explains the concept of inverted index lists that support an efficient query
execution and section 3.2 introduces one of the most popular similarity measures,
the so-called TF*IDF measure. For further reading, we refer the reader to [6,
24].
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3.1 Inverted Index Lists

The concept of inverted index lists has been developed in order to efficiently iden-
tify those documents in the dataset that contain a specific query term. For this
purpose, all terms that appear in the collection form a tree-like index structure
(often a b+-tree or a trie) where the leafes contain a list of unique document iden-
tifiers for all documents that contain this term (Figure 1). Conceptually, these
lists are combined by intersection or union for all query terms to find candidate
documents for a specific query. Depending on the exact query execution strat-
egy, the lists of document identifiers may be ordered according to the document
identifiers or according to a score value to allow efficient pruning.
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Fig. 1. B+ Tree of Inverted Index Lists

3.2 TF ∗ IDF Measure

The number of occurrences of a term t in a document d is called term fre-
quency and typically denoted as tf t,d. Intuitively, the significance of a document
increases with the number of occurrences of a query term. The number of docu-
ments in a collection that contain a term t is called document frequency (dft); the
inverse document frequency (idf t) is defined as the inverse of df t. Intuitively, the
relative importance of a query term decreases as the number of documents that
contain this term increases, i.e., the term offers less differentiation between the
documents. In practice, these two measures may be normalized (e.g., to values
between 0 and 1) and dampened using logarithms. A typical representative of
this family of tf ∗ idf formulae that calculates the weight wi,f of the i-th term
in the j-th document is

wi,j :=
tfi,j

maxt{tft,j}
∗ log(

N

dfi
)

where N is the total number of documents in the collection.
In recent years, other relevance measures based on statistical language mod-

els and probabilistic IR have received wide attention [7, 25]. For simplicity and
because our focus is on P2P distributed search, we use the still most popular
tf ∗ idf scoring family in this paper.
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4 MINERVA

We briefly introduce MINERVA1, a fully operational distributed search engine
that we have implemented and that serves as a valuable testbed for our work[26,
27]. We assume a P2P collaboration in which every peer is autonomous and has
a local index that can be built from the peer’s own crawls or imported from
external sources and tailored to the user’s thematic interest profile. The index
contains inverted lists with URLs for Web pages that contain specific keywords.

A conceptually global but physically distributed directory, which is layered
on top of a Chord-style Dynamic Hash Table (DHT), holds compact, aggre-
gated information about the peers’ local indexes and only to the extent that
the individual peers are willing to disclose. We only use the most basic DHT
functionality, lookup(key), that returns the peer currently responsible for key.
Doing so, we partition the term space, such that every peer is responsible for
a randomized subset of terms within the global directory. For failure resilience
and availability, the entry for a term may be replicated across multiple peers.

Directory maintenance, query routing, and query processing work as follows
(cf. Figure 2). In a preliminary step (step 0), every peer publishes a summary
(Post) about every term in its local index to the directory. A hash function
is applied to the term in order to determine the peer currently responsible for
this term. This peer maintains a PeerList of all postings for this term from
peers across the network. Posts contain contact information about the peer who
posted this summary together with statistics to calculate IR-style measures for
a term (e.g., the size of the inverted list for the term, the maximum average
score among the term’s inverted list entries, or some other statistical measure).
These statistics are used to support the query routing process, i.e., determining
the most promising peers for a particular query.
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P2

P3

P6

 
Fig. 2. MINERVA System Architecture

The querying process for a multi-term query proceeds as follows: a query is
executed locally using the peer’s local index. If the result is considered unsatis-
factory by the user, the querying peer retrieves a list of potentially useful peers
1 Project homepage available at http://www.minerva-project.org
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by issuing a PeerList request for each query term to the underlying overlay-
network directory (step 1). Using database selection methods from distributed
IR and metasearch [11], a number of promising peers for the complete query is
computed from these PeerLists. This step is referred to as query routing. Subse-
quently, the query is forwarded to these peers and executed based on their local
indexes (query execution; step 2). Note that this communication is done in a
pairwise point-to-point manner between the peers, allowing for efficient commu-
nication and limiting the load on the global directory. Finally, the results from
the various peers are combined at the querying peer into a single result list.

The goal of finding high-quality search results with respect to precision and
recall cannot be easily reconciled with the design goal of unlimited scalability,
as the best information retrieval techniques for query execution rely on large
amounts of document metadata. Posting only compact, aggregated information
about local indexes and using appropriate query routing methods to limit the
number of peers involved in a query keeps the size of the global directory man-
ageable and reduces network traffic, while at the same time allowing the query
execution itself to rely on comprehensive local index data. We expect this ap-
proach to scale very well as more and more peers jointly maintain the moderately
growing global directory.

The approach can easily be extended in a way that multiple distributed di-
rectories are created to store information beyond local index summaries, such
as information about local bookmarks, information about relevance assessments
(e.g., derived from peer-specific query logs or click streams), or explicit user
feedback. This information could be leveraged when executing a query to fur-
ther enhance result quality.

4.1 Query Routing

Database selection has been a research topic for many years, e.g. in distributed
IR and metasearch [11]. Typically, the expected result quality of a collection is
estimated using precomputed statistics, and the collections are ranked accord-
ingly. Most of these approaches, however, are not directly applicable in a true
P2P environment, as
• the number of peers in the system is substantially higher (10x peers as opposed

to 10-20 databases)
• the system evolves dynamically, i.e. peers enter or leave the system autonomously

at their own discretion at a potentially high rate
• the results from remote peers should not only be of high quality, but also com-

plementary to the results previously obtained from one’s local search engine
or other remote peers
In [26, 28], we have adopted a number of popular existing approaches to fit

the requirements of such an environment and conducted extensive experiments
in order to evaluate the performance of these naive approaches.

As a second step, we have extended these strategies using estimators of mutual
overlap among collections [23] using bloom filters [17]. Preliminary experiments
show that such a combination can outperform popular approaches based on
quality estimation only, such as CORI [11].

We also want to incorporate the fact that every peer has its own local index,
e.g., by using implicit-feedback techniques for automated query expansion (e.g.,
using the well-known IR technique of pseudo relevance feedback [29] or other
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techniques based on query logs [30] and click streams [31]). For this purpose, we
can benefit from the fact that each peer executes the query locally first, and also
the fact that each peer represents an actual user with personal preferences and
interests. For example, we want to incorporate local user bookmarks into our
query routing [28], as bookmarks represent strong recommendations for specific
documents. Queries could be exclusively forwarded to thematically related peers
with similarly interested users, to improve the chances of finding subjectively
relevant pages.

Ultimatively, we want to introduce a sophisticated benefit/cost ratio when
selecting remote peers for query forwarding. For the benefit estimation, it is intu-
itive to consider such measures as described in this section. Defining a meaningful
cost measure, however, is an even more challenging issue. While there are tech-
niques for observing and inferring network bandwidth or other infrastructural
information, expected response times (depending on the current system load) are
changing over time. One approach is to create a distributed Quality-of-Service
directory that, for example, holds moving averages of recent peer response times.

4.2 Query Execution

Query execution based on local index lists has been an intensive field of research
for many years in information retrieval. A good algorithm should avoid reading
inverted index lists completely, but limit the effort to O(k) where k is the number
of desired results. In the IR and multimedia-search literature, various algorithms
have been proposed to accomplish this. The best known general-purpose method
for top-k queries is Fagin’s threshold algorithm (TA) [32], which has been in-
dependently proposed also by Nepal et al. [33] and Güntzer et al. [34]. It uses
index lists that are sorted in descending order of term scores under the additional
assumption that the final score for a document is calculated using a monotone
aggregation function (such as a simple sum function). TA traverses all inverted
index lists in a round-robin manner, i.e., lists are mainly traversed using sorted
accesses. For every new document d encountered, TA uses random accesses to
calculate the final score for d and keeps this information a in document candi-
date set. Since TA additionally keeps track of a higher bound for documents not
yet encountered, the algorithm terminates as soon as this bound assures that no
unseen document can enter the candidate set. Probabilistic methods have been
studied in [35] that can further improve the efficiency of index processing.

As our focus is on the distributed aspect of query processing, we will not
focus on query execution in this paper. Our approaches to be introduced in the
upcoming sections are orthogonal to this issue and can be applied to virtually
any query execution strategy.

5 Global Document Occurrences (GDO)

We define the global document occurrence of a document d (GDOd) as the num-
ber of peers that contain d, i.e., as the number of occurrences of d within the
network. This is substantially different from the notion of global document fre-
quency of a term t (which is the number of documents that contain t) and from
the notion of collection frequency (which is typically defined as the number of
collections that contain documents that contain t).
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The intuition behind using GDO when processing a query is the fact that
GDO can be used to efficiently estimate the probability that a peer contains a
certain document and, thus, the probability that a document is contained in at
least one of a set of peers. Please note the obvious similarity to the TF ∗ IDF
measure, that weights the relative importance of a query term t using the number
of documents that contain t as an estimation of the popularity of t, favoring
rare terms over popular (and, thus, less distinctive and discriminative) terms.
Similarly, the GDO approach weights the relative popularity of a document
within the union of all collections. If a document is highly popular (i.e., occurs in
most of the peers), it is considered less important both when selecting promising
peers (query routing) and when locally executing the query (query execution).
In contrast, rare documents receive a higher relative importance.

5.1 Mathematical Reasoning

The proposed approach will get clearer if we describe the reasoning behind
it. Suppose that we are running a single-keyword query, and that each docu-
ment d in our collection has a precomputed relevance to a term t (noted as
DocumentScore(d, t)). When searching for the top-k documents, a P2P system
would ask some of its peers for documents, which determine the relevant docu-
ments locally, and merge the results.

This independent document selection has the disadvantage that it does not
consider overlapping results. For example, one relevant document might be so
common, that every peer returns it as result. This reduces the recall for a query,
as the document is redundant for all but the first peer. In fact, massive document
replication is common in real P2P systems, so duplicate results frequently occur.
This effect can be described with a mathematical model, which can be used to
improve document retrieval.

Assuming a uniform distribution of documents among the peers, the proba-
bility that a given peer has a certain document d can be estimated by

PH(d) =
GDO(d)
#peers

.

Now consider a sequence of peers < p1, . . . , pλ >. The probability that a given
document d held by pλ is fresh, i.e. not already occurs in one of the previous
peers, can be estimated by

Pλ
F (d) = (1− PH(d))λ−1.

This probability can now be used to re-evaluate the relevance of documents:
If it is likely that a previously queried peer has already returned a document,
the document is no longer relevant. Note that we introduce a slight inaccuracy
here: We only used the probability that one of the previously asked peers has a
document, not the probability that it has also returned the document. Thus we
would be interested in the probability that a document has not been returned
before Pλ

NR(d). However the error introduced is reasonably small: for all docu-
ments Pλ

NR(d) ≥ Pλ
F (d). For the relevant documents Pλ

NR(d) ≈ Pλ
F (d), as the

relevant documents will be returned by the peers. Therefore we only underesti-
mate (and, thus, punish) the probability for irrelevant documents, which is not
too bad, as the they were irrelevant anyway.
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Now this probability can be used to adjust the scores according to the GDO.
The most direct usage would be to discard a document d during retrieval with a
probability of (1 − Pλ

F (d)), but this would produce non-deterministic behavior.
Instead we adjust the DocumentScores of a document d with regard to a term t
by aggregating the scores and the probability; for simplicity, we multiply them
in our current experiments.

DocumentScore′(d, t) = DocumentScore(d, t) ∗ Pλ
F (d)

This formula reduces the scores for frequent documents, which avoids duplicate
results. Note that Pλ

F (document) decreases with λ, thus frequent documents are
still returned by peers asked early, but discarded by the following peers.

5.2 Apply GDO to Query Routing

In most of the existing approaches to query routing, the quality of a peer is
estimated using per-term statistics about the documents that are contained in its
collection. Popular approaches include counting the number of documents that
contain this term (document frequency), or summing up the document scores
for all these documents (score mass). These term-specific scores are combined
to form an aggregated PeerScore with regard to a specific query. The peers are
ordered according to their PeerScore to form a peer ranking that determines an
order in which the peers will be queried.

The key insight of our approach to tackle the problem of retrieving duplicate
documents seems obvious: the probability of a certain document being contained
in at least one of the involved peers increases with the number of involved peers.
Additionally, the more popular the document, the higher the probability that it
is contained in one of the first peers to contribute to a query. Thus, the impact
of such documents to the PeerScore should decrease as the number of involved
peers increases.

If a candidate peer in the ranking contains a large fraction of popular docu-
ments, it would be increasingly unwise to query this peer at later stages of the
ranking, as the peer might not have any fresh (i.e., previously unseen) documents
to offer. In contrast, if no peers have been queried yet, then a peer should not be
punished for containing popular documents, as we certainly do want to retrieve
those documents. We suggest an extension that is applicable to almost all pop-
ular query routing strategies and calculates the PeerScore of a peer depending
on its position in the peer ranking.

For this purpose, we modify the score of each document in a collection with
different biases, one for each position in a peer ranking2. In other words, there is
no longer only one DocumentScore for each document, but rather several Doc-
umentScores corresponding to the potential ranks in a peer ranking. Remember
from the previous section, that the DocumentScore of a document d with regard
to term t is calculated using the following formula:

DocumentScore′(d, t, λ) = DocumentScore(d, t) ∗ Pλ
F (d)

2 Please note that, for techniques that simply count the number of documents, all
scores are initially set to 1.
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where λ is the position in the peer ranking (i.e., the number of peers that have
already contributed to the query before), and Pλ

F (d) is the probability that this
document is not contained in any of the previously contributing collections.

From this set of DocumentScores, each peer now calculates separate term-
specific scores (i.e., the scores that serve as subscores when calculating PeerScores
in the process of Query Routing) corresponding to the different positions in
a peer ranking by combining the respectively biased document scores. In the
simplest case where the PeerScore was previously calculated by summing up
the scores for all relevant documents, this means that now one of these sums is
calculated for every rank λ:

score(p, t, λ) =
∑

d∈Dp

DocumentScore′(d, t, λ)

where Dp denotes the document collection of p. Instead of including only
one score in each term-specific post, now a list of the term-specific peer scores
score(p, t, λ) is included in the statistics that is published to the distributed
directory. Figure 3 shows some extended statistics for a particular term. The
numbers shown in the boxes left to the scores represent the respective ranks in a
peer ranking. Please note that the term-specific score of a peer decreases as the
document scores for its popular documents decrease with the ranking position.
Prior experiments have shown that typically involving only 2-3 peers in a query
already yields a reasonable recall; we only calculate score(p, t, λ) for λ ≤ 10
[26] as we consider asking more than 10 peers very rare and not compatible
with our goal of system scalability. The calculation itself of this magnitude of
DocumentScores is negligible.

Peer X

0.89161.

0.65462.

0.45333.

Peer Y

0.79241.

0.68142.

0.55133.

. . . . . 

Published Metadata for Term a

0.097410. 0.104510.
 

Fig. 3. Extended Term-specific scores for different ranking positions

Please also note that this process does not require the selected peers to locally
execute the queries sequentially, but it allows for the parallel query execution of
all peers involved: after identifying the desired number of peers and their ranks in
the peer ranking, the query initiator can contact all other peers simultaneously
and include their respective ranks in the communication. Thus, the modification
of the standard approach using GDOs does not cause additional latencies.

The additional network resource consumption needed for our proposed ap-
proach is relatively small if conducted in a clever manner. Instead of distributing
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the GDO counters across the peers using random hashing on unique document
identifiers, we propose to maintain the counters at peers that are responsible
for a representative term within the document, (e.g., the first term or the most
frequent term). Doing so, we can easily piggyback the GDO-related communica-
tion when publishing the Posts and, in turn, can immediately receive the current
GDO values for the same documents. The GDO values are then cached locally
and used to update the local DocumentScores, that will eventually be used when
publishing our Posts again. The Posts itself become slightly larger as more than
one score value is now included in a Post; this will typically fit within the existing
network message avoiding extra communication.

5.3 Apply GDO to Query Execution

The peers that have been selected during query routing can additionally use
GDO-dependent biases to penalize popular documents during their local query
execution. The later a peer is involved in the processing of a query, the higher
punishing impact this GDO-dependent bias should have as popular documents
are likely to be considered at prior peers. For this purpose, each peer re-weights
the DocumentScores obtained by its local query execution with the GDO-values
for the documents.

1st Peer

top- documents
top documents but too high GDO
new “top” documents

2nd Pee r      3rd Peer

 

Fig. 4. The impact of GDO-enhanced query execution.

Figure 4 shows the impact of the GDO-based local query execution3.
The additional cost caused by our approach within the query execution step

is negligible. As the GDO values are cached locally as described in a previous
section, the DocumentScores can easily be adjusted on-line using a small number
of basic arithmetic operations.

3 In case you see a 79 in the right figure, please contact your local ophthalmologist
immediately.
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5.4 Building and Maintaining GDO

All the approaches introduced above build on top of a directory that globally
counts the number of occurrences or each document. When a new peer joins the
network, it updates GDO for all its documents (i.e., increment the respective
counters) and retrieves the GDO values for the computation of its biased scores
at low extra cost.

We propose the usage of the existing distributed DHT-based directory to main-
tain the GDO values in a scalable way. In a naive approach, the document space
is partitioned across all peers using globally unique document identifiers, e.g.,
by applying a hash function to their URLs and maintaining the counter at the
DHT peer that is responsible for this identifier (analogously to the term-specific
statistics that are maintained independently in parallel). This naive approach
would require two messages for each document per peer (one when the peer en-
ters and one when the peer leaves the network), which results to O(n) messages
for the whole system, where n is the number of document instances.

However, the advanced approach of piggybacking this information onto exist-
ing messages almost avoids additional messages completely. In fact, when a peer
enters the network, no additional messages are required for the GDO mainte-
nance, as all messages are piggybacked in the process of publishing Post objects
to the directory.

To cope with the dynamics of a Peer-to-Peer system, in which peers join
and leave the system autonomously and without prior notice, we propose the
following technique. Each object in the global directory is assigned a TTL (time-
to-live) value, after which it is discarded by the maintaining peer. In turn, each
peer is required to re-send its information periodically. This fits perfectly with
our local caching of GDO values, as these values can be used when updating the
Post objects. This update process, in turn, again updates the local GDO values.

6 Experiments

6.1 Benchmarks

We have generated two synthetic benchmarks. The first benchmark includes 50
peers and 1000 unique documents, while the second benchmark consists of 100
peers and 1000 unique documents. We assign term-specific scores to the docu-
ments following a Zipf[36] distribution, as in real world we often find documents
that were highly relevant with regard to one term, but practically irrelevant
(with a very low score) with regard to the remaining terms. The assumption
that the document scores follow Zipf’s law is widely accepted in information
retrieval literature.

The document replication follows a Zipf distribution, too. This means that
most documents are assigned to a very small number of peers (i.e., have a low
GDO value) and only very few documents are assigned to a large number of
peers (i.e., have a high GDO value). Please note that, although the GDOs and
the document scores of the documents were following a Zipf distribution, the two
distributions were not connected. This means that we do not expect a document
with a very high importance for one term to be also highly replicated. We do
not believe that this would create real-world document collections as we know
from personal experiences that the most popular documents are not necessarily
the most relevant documents.
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6.2 Evaluated Strategies

In our experimental evaluation, we compare six different strategies. All strategies
consist of the query routing part and the query execution part. For query routing,
our baseline algorithm for calculating the PeerScore of a peer p works as follows:
• score(p, t) =

∑
d∈Dp

DocumentScore(d, t), i.e., the (unbiased) score mass of
all relevant documents in p’s collection Dp

• PeerScore(p, q) =
∑

t∈q score(p, t), i.e., the sum over all term-specific scores
for all terms t contained in the query q

For the query execution part, the synthetically created DocumentScores where
derived by summing up the (synthetically assigned) term-specific scores de-
scribed above. At both stages, query routing and query processing, we can either
choose a standard (non-GDO) approach our our GDO-enhanced approach, yield-
ing a total of four strategies. The GDO values were provided to each strategy
using global knowledge of our data.

In addition, we employ two other strategies that use a mod-k sampling-based
query execution technique to return fresh documents: In the query execution
process, the peers will return only documents with (DocumentId mod κ) = λ
where κ is the total number of peers that are going to be queried (i.e. top-10),
and λ is the number of peers that have already been queried.

6.3 Evaluation Methodology

We run several three-term queries using the six strategies introduced above. In
each case, we send the query to the top-10 peers suggested by each approach,
and collect the local top-20 documents from each peer. Additionally, we run
the queries on a combined collection of all peers to retrieve the global top-100
documents that serves as a baseline for our strategies.

We use four metrics to assess the quality of each strategy:
• the number of distinct retrieved documents, i.e., after eliminating duplicates
• the score mass of all distinct retrieved document4
• the number of distinct retrieved top-100 documents
• the score mass of distinct retrieved top-100 documents

6.4 Results

The experiments are conducted on both benchmark collections. Due to space
limitations, we only present the results for the 50-peer setup; the results of the
100-peer setup are very similar.

The GDO-enhanced strategies show significant performance gains. Figure 5
shows the number of distinct retrieved documents, while Figure 6 shows the
aggregated score masses for these documents. Figure 7 shows the number of
distinct retrieved top-100 documents; Figure 8 shows the corresponding score
masses. While all other strategies outperform the baseline strategy, it is inter-
esting to notice that query execution can obviously draw more benefit from the
GDO-enhancement than query routing can; if applied to query routing only,
4 Note that, by design, the same document is assigned the same score at different

peers.
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our GDO-approach does not show significant performance improvements. This
does not come as a surprise and is partly due to the nature of our benchmark.
For larger peer populations showing significant mutual overlap, we expect the
GDO-enhanced query routing to outperform the baseline strategy in a more
impressive way. On the other hand, the query execution technique has a great
impact on the number of distinct documents. Using GDO-enhancement, popu-
lar documents are discarded from the local query results, giving place to other
(otherwise not considered) documents.

The naive mod-κ approaches are quite successful in retrieving distinct doc-
uments; however, they perform bad if we evaluate the quality of the returned
documents by calculating score masses. On the other hand, using the two-way
GDO-enhanced strategy (both GDO-routing and GDO-query processing) com-
bines many fresh documents with high scores for our query, resulting in a signif-
icant recall improvement.
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Fig. 5. Distinct documents retrieved with regard to the number of queried peers

7 Conclusion and Future Work

This work presents an approach toward improving the query processing in Peer-
to-Peer Information Systems. The approach is based on the notion of Global
Document Occurrences (GDO) and aims at increasing the number of uniquely
retrieved high-quality documents without imposing significant additional net-
work load or latency. Our approach can be applied both at the stage of query
routing (i.e., when selecting promising peers for a particular query) and when
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Fig. 6. Score mass of the retrieved documents with regard to the number of queried
peers
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Fig. 7. Distinct documents from global top-100 with regard to the number of queried
peers
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Fig. 8. Score mass of distinct retrieved documents from global top-100 with regard to
the number of queried peers

locally executing the query at these selected peers. The addition cost caused to
build and maintain the required statistical information is small and our approach
is expected to scale very well with a growing network. Early experiments show
the potential of our approach, significantly increasing the recall experienced in
our settings.

We are currently working on experiments on real data obtained from focused
web crawls, which exactly fits our environment of peers being users with individ-
ual interest profiles. Also, a more thorough study of the resource consumption
of our approach in under way. One central point of interest is the directory
maintenance cost; in this context, we evaluate strategies that do not rely on pe-
riodically resending all information, but on explicit GDO increment/decrement
messages. Using a time-sliding window approach, this might allow us to even
more efficiently estimate the GDO values.

References

1. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the ACM SIGCOMM 2001, ACM Press (2001) 149–160

2. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: Proceedings of ACM SIGCOMM 2001, ACM Press (2001)
161–172

3. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware). (2001) 329–350

16
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