Text Clustering for Peer-to-Peer Networks
with Probabilistic Guarantees

Odysseas Papapetrou', Wolf Siberski', and Norbert Fuhr?

! L3S Research Center {papapetrou,siberski}@13s.de
2 Universitit Duisburg-Essen norbert . fuhr@uni-due.de

Abstract. Text clustering is an established technique for improving
quality in information retrieval, for both centralized and distributed envi-
ronments. However, for highly distributed environments, such as peer-to-
peer networks, current clustering algorithms fail to scale. Our algorithm
for peer-to-peer clustering achieves high scalability by using a proba-
bilistic approach for assigning documents to clusters. It enables a peer
to compare each of its documents only with very few selected clusters,
without significant loss of clustering quality. The algorithm offers proba-
bilistic guarantees for the correctness of each document assignment to a
cluster. Extensive experimental evaluation with up to 100000 peers and
1 million documents demonstrates the scalability and effectiveness of the
algorithm.

1 Introduction

Text clustering is widely employed for automatically structuring large document
collections and enabling cluster-based information browsing, which alleviates
the problem of information overflow. It is especially useful on large-scale dis-
tributed environments such as distributed digital libraries [8] and peer-to-peer
(P2P) information management systems [2], since these environments operate
on significantly larger document collections. Existing P2P systems also employ
text clustering to enhance information retrieval efficiency and effectiveness [11,
17]. However, these systems do not address the problem of efficient distributed
clustering computation; they assume that clustering is performed on a dedicated
node, and are therefore not scalable. Existing distributed and P2P clustering ap-
proaches, such as [3,5,7,9], are also limited to a small number of nodes, or to
low dimensional data. Hence, a distributed clustering approach that scales to
large networks and large text collections is required.

In this work we focus on text clustering for large P2P networks. We are partic-
ularly interested in systems in which the content distribution is imposed by the
nature of the system, e.g., P2P desktop sharing systems [2]. We require a P2P
clustering algorithm which can cluster such distributed collections effectively
and efficiently, without overloading any of the participating peers, and without
requiring central coordination.

A key factor to reduce network traffic for distributed clustering in these sys-
tems is to reduce the number of required comparisons between documents and
clusters. Our approach achieves this by applying probabilistic pruning: Instead
of considering all clusters for comparison with each document, only a few most

© Springer 2010

relevant ones are taken into account. We apply this core idea to K-Means, one of
the frequently used text clustering algorithms. The proposed algorithm, called
Probabilistic Clustering for P2P (PCP2P), reduces the number of required com-
parisons by an order of magnitude, with negligible influence on clustering quality.
In the following section, we present current distributed and P2P clustering al-
gorithms, and explain why they are not applicable for P2P text clustering. In
Section 3 we introduce PCP2P, an efficient and effective P2P text clustering al-
gorithm. We present the probabilistic analysis for PCP2P in Section 4, and show
how it is parameterized to achieve a desired correctness probability. In Section 5
we verify scalability and quality of PCP2P in large experimental setups, with
up to 100000 peers and 1 million documents, using real and synthetic data.

2 Related Work

Distributed Hash Tables. PCP2P relies on a Distributed Hash Table (DHT)
infrastructure. DHTs provide efficient hash table capabilities in a P2P environ-
ment by arranging peers in the network according to a specific graph structure,
usually a hypercube. DHTs offer the same functionality as their standard hash
table counterparts, a put(key,value) method, which associates value with
key, and a get (key) method, which returns the value associated with key. Our
implementation uses Chord [16], but any other DHT could be used as well.
Distributed Clustering. Several algorithms for parallelizing K-Means have
been proposed, e.g., [4,6]. These algorithms focus on harnessing the power of
multiple nodes to speed up the clustering of large datasets. They assume a con-
trolled network or a shared memory architecture, and therefore are not applicable
for P2P, where these assumptions do not apply.

Eisenhardt et al. [5] proposed one of the first P2P clustering algorithms. The
algorithm distributes K-Means computation by broadcasting the centroid infor-
mation to all peers. Due to this centroid broadcasting, it cannot scale to large
networks. Hsiao and King [9] avoid broadcasting by employing a DHT. Clusters
are indexed in the DHT using manually selected terms. This requires extensive
human interaction, and the algorithm cannot adapt to new topics.

Datta et al. [3] proposed LSP2P and USP2P, two P2P approximations of K-
Means. LSP2P uses gossiping to distribute the centroids. In an evaluation with
10-dimensional data, LSP2P achieves an average misclassification error of less
than 3%. However, as we show in Section 5, LSP2P fails for text clustering,
because it is based on the assumption that data is uniformly distributed among
the peers, i.e., each peer has at least some documents from each cluster. This as-
sumption clearly does not hold for text collections in P2P networks. The second
algorithm, USP2P, uses sampling to provide probabilistic guarantees. However,
the probabilistic guarantees are also based on the assumption that data is uni-
formly distributed among the peers. Also, USP2P requires a coordinating peer
which gets easily overloaded, since it is responsible for exchanging centroids with
a significant number of peers, for sampling, e.g., 500 peers out of 5500 peers.

STEPS DHT Cluster Roles of Peer 1

1. DHT Lookup for top Inverted Index (" DocumentHolder |DH... Algorithm 1 PCP2P: Clustering the documents
terms of d !

/| For each document d:
@

2. Retrieve all relevant 1: for Document d in my documents do

clusters g [Tem frres PRESELECTION STEP:
g i
8 ;T:;’a’i:iﬁ‘s[:"’s'n" . o \[Spors[3 2: CandClusters + CandidateClustersFromDHT()
4. Assign d to best cluster G Vulley}z FULL COMPARISON STEP:
b 3: RemainingClusters < FilterOut(candClusters)
o """Roles of Peer 6 e 4: for Cluster ¢ in RemainingClusters do
“Docum..[DHT..! ClusterHolder " Roles of Peer 2 : 5
- | Docum..| DHT Participant Clust... 5: Send d.termVector() to ClusterHolder(c)
 OIdOrCIUSEnO , | Holder for key ‘tennis’in 6: Sim[c] + Retrieve similarity(d,c)
» [Term [Freq % | cluster inverted index 7 d f
E ([Tennis [17 % |[Clusters for term ‘tennis’ . end tor . .
£ [Hockeyl16 | |[Cluster 6 _Scorer17 Holder:P6 ... 8: Assign(d, cluster with max Sim)
S Y.olley ‘11 4 Cluster 5 Score:14 Holder:P5 ... 9: end for

Fig. 1. PCP2P: a. System architecture, b. Algorithm for document assignment

Hammouda et al. [7] use a hierarchical topology for the coordination of K-Means
computation. Clustering starts at the lowest level, and the local solutions are
aggregated until the root peer of the hierarchy is reached. This algorithm has the
disadvantage that clustering quality decreases noticeably for each aggregation
level, because of the random grouping of peers at each level. Therefore, quality
decreases significantly for large networks. The authors report a quality of less
than 20% of the quality of K-Means already for 65 nodes.

3 PCP2P: Probabilistic Clustering for P2P

In PCP2P, a peer has up to three different roles (Fig. 1.a.). First, it serves as
document holder, i.e., it keeps its own document collection, and it assigns its
documents to clusters. Second, it participates in the underlying DHT by holding
part of the distributed index. Third, a peer can be a cluster holder, i.e., maintain
the centroid and document assignments for one cluster.

PCP2P consists of two parallel activities, cluster indexing and document as-
signment. Both activities are repeated periodically to compensate churn, and
to maintain an up-to-date clustering solution. Cluster indexing is performed by
the cluster holders. In regular intervals, these peers create compact cluster sum-
maries and index them in the underlying DHT, using the most frequent cluster
terms as keys. We describe this activity in Section 3.1. The second activity,
document assignment, consists of two steps, preselection and full comparison.
In the preselection step, the peer holding d retrieves selected cluster summaries
from the DHT index, to identify the most relevant clusters (Fig. 1.b, Line 2).
Preselection already filters out most of the clusters. In the full comparison step,
the peer computes similarity score estimates for d using the retrieved cluster
summaries. Clusters with low similarity estimates are filtered out (Line 3, see
Section 3.2 for details), and the document is sent to the few remaining clus-
ter holders for full similarity computation (Lines 4-7). Finally, d is assigned to
the cluster with highest similarity (Line 8). This two-stage filtering algorithm
reduces drastically the number of full comparisons (usually less than five com-
parisons per document, independent of the number of clusters). At the same
time, it provides probabilistic guarantees that the resulting clustering solution
exhibits nearly the same quality as centralized clustering (Section 4).

3.1 Indexing of Cluster Summaries

Cluster holders are responsible for indexing summaries of the clusters in the
DHT. Particularly, each cluster holder periodically recomputes its cluster cen-
troid, using the documents assigned to the cluster at the time. It also recom-
putes a cluster summary and publishes it to the DHT index, using selected
cluster terms as keys. As we explain later, this enables peers to identify rele-
vant clusters for their documents efficiently. For this identification, it is suffi-
cient to consider the most frequent terms of a cluster ¢ as keys, i.e., all terms
t with TF(t,c) > CluT Fpin(c), where CluTF,;n(c) denotes the frequency
threshold for ¢. We use TopTerms(c) to denote the set of these terms. Note
that TopTerms(c) does not include stopwords; these are already removed when
building the document vectors. For the rest of this section we assume that
CluT Fpnin(c) is given. Section 4 shows how a value for this threshold can be
derived that satisfies the desired probabilistic guarantees.

The cluster summary includes (1) all cluster terms in TopTerms(c) and their
corresponding T'F values, (2) CluT Fyi,(c), and (3) the sum of all term frequen-
cies (the L1 norm), cluster length (the L2 norm), and dictionary size.

Load Balancing. To avoid overloading, each cluster holder selects random peers
to serve as helper cluster holders, and replicates the cluster centroid to them.
Their IP addresses are also included in the cluster summaries, so that peers can
randomly choose a replica without going through the cluster holder. Communi-
cation between the master and helper cluster holders only occurs for updating
the centroids, by exchanging the respective local centroids as in [4]. Since only
one centroid needs to be transferred per helper cluster holder and only a small
number of peers is involved, load balancing does not affect scalability.

3.2 Document Assignment to Clusters

Each peer is responsible of clustering its documents periodically. Clustering of
a document consists of two steps: (a) the preselection step, where the most
promising clusters for the document are detected, and, (b) the full comparison
step, where the document is fully compared with the most promising clusters
and assigned to the best one.

Preselection step. Consider a peer p which wants to cluster a document d.
Let TopTerms(d) denote all terms in d with TF(t,d) > DocT F,,in(d), where
DocT Fpin(d) denotes a frequency threshold for d (we explain how DocT F,,;,,
is derived in Section 4). For each term t in TopTerms(d), peer p performs a
DHT lookup and finds the peer that holds the cluster summaries for ¢ (Fig. 1.a,
Step 1). It then contacts that peer directly to retrieve all summaries published
using ¢ as a key (Step 2). To avoid duplicate retrieval of summaries, p executes
these requests sequentially, and includes in each request the cluster ids of all
summaries already retrieved. We refer to the list of all retrieved summaries as
the preselection list, denoted with Cp,.. The summary of the optimal cluster for
d is included in C,,. with high probability, as shown in Section 4.

Full comparison step. After constructing Cp,e, peer p progressively filters out
the clusters not appropriate for the document at hand, using one of two alt-
ernative filtering strategies, as follows. Using the retrieved cluster summaries,
p estimates the cosine similarities for all clusters in Cp,.. For the cluster with
the highest similarity estimate, p sends the compressed term vector of d to the
respective cluster holder for a full cosine similarity, and retrieves the similarity
score (Fig. 1.a, Step 3). Based on this score and the employed filtering strategy,
more clusters are filtered out. The process is repeated until Cp,. is empty. Finally,
p assigns d to the cluster with the highest similarity score, and notifies the
respective cluster holder (Step 4).
Filtering Strategies. We propose two different strategies to filter out clusters
from Cpre, (a) conservative, and (b) Zipf-based filtering. Both strategies employ
the information contained in the cluster summaries to estimate the cosine simi-
larity between the document and each candidate cluster. Let ¢1, ¢, ..., ¢, denote
the terms of d sorted descending by their frequency, i.e., TF(t;,d) > TF(t;,d)
for all j > 4. Cosine similarity is estimated as follows.
" TF(t;,d) x f(ts,c)

ECos(d, c) ; X (1)
|d| and |¢| denote the L2-Norm of the document and cluster. The function f(t;, ¢)
denotes an estimation for TF'(¢;, ¢), which is specific to the filtering strategy. We
will address this function in detail in the next paragraphs.
Having estimated the cosine similarities for all clusters in Cp,., PCP2P proceeds
as follows. Let cmgz denote the cluster in Cpr. with the maximum estimated
similarity. Peer p removes c¢mgz from the list and sends the compressed term
vector of d to the cluster holder of cmgz, for cosine comparison. After retriev-
ing the real cosine value Cos(d, cmaz), it removes from Cp,. all clusters ¢ with
ECos(d, c) < Cos(d, cmgz). This process is repeated, until Cpy. is empty. Finally,
d is assigned to the cluster with the highest cosine similarity.
The key distinction between the two filtering strategies is the way they compute
ECos(d,c), and, in particular, their definition of f(¢;,c).
Conservative filtering. The conservative strategy computes an upper bound
for cosine similarity. For the terms included in the cluster’s summary, conserva-
tive strategy uses the actual cluster frequency, included in the summary. For all
other terms, it progressively computes an upper bound for the term frequency
in the cluster. Formally, f(¢;, ¢) is defined as follows.

Flts,o) TF(ti,c) if t; € TopTerms(c)
i,C) = . .
min(CluT Fin(c) — 1,SC — ST — SE) otherwise

where SC is the sum of cluster frequencies for all terms included in the cluster,
and ST is the sum of cluster frequencies for all terms included in TopTerms(c).
SE holds the sum of all term frequencies estimated up to now by the algorithm
for c. By definition, the conservative strategy never underestimates the cosine
similarity value. Therefore, this strategy always detects the best cluster.

Zipf-based filtering. A more accurate similarity estimation can be derived
based on the assumption that term frequencies in the cluster follow a Zipf dis-
tribution. Recall that document terms tq,ts,...,t, are ordered descending on

their frequency. We use this order to estimate the rank of terms not included in
the cluster summary. Zipf-based filtering defines f(¢;,c) as follows:

min(SC/(r* x 01 1/k*), SC — ST — SE) otherwise

TF(t;,c if t; € TopTerms(c
f(ti,c):{ (t:.¢) pTerms(c)

SC, ST, and SE are defined as in the conservative strategy. DT denotes the
number of distinct terms in ¢, and with r we represent the estimated rank for
the missing term. SC/(r® x ZkD:Tl 1/k*®) gives the expected term frequency of ¢;
in ¢, assuming that term frequencies follow a Zipf distribution with exponent s.
Ranks of missing terms are estimated as follows: the i-th document term that
is not included in the TopTerms(c) is assumed to exist in the cluster centroid,

with rank r = |TopTerms(c)| + i.

3.3 Cost analysis

We express cost in number of messages and transfer volume. For a cluster c,
the cost of indexing the cluster summary (both in number of messages and
transfer volume) is Cost;qg = O(|TopTerms(c)| xlog(n)), where n is the number
of peers. The cost of the preselection step for each document d is Costyre =
O(|TopTerms(d)| xlog(n)). The full comparison step incurs a cost of Costcs =
O(|Cfcs|), where Cys denotes the set of clusters fully compared with d.

The dominating cost is the one incurred for assigning documents to clusters,
namely Costpre + Costf.s. Per document, this cost has the following properties:
(a) it grows logarithmically with the number of peers, because DHT access cost
grows logarithmically, and (b) it is independent of the size of the document
collection. It also depends on |Cyes|. Our experimental evaluation (Section 5)
shows that |Cf.s| is on average very small, and independent of the total number
of clusters k. This means that PCP2P scales to networks of large sizes, and with
large numbers of documents and clusters.

4 Probabilistic Analysis

In the previous section, we assumed that the optimal values for CluT F,;n(c)
and DocT F,in(d) are given. We now describe how PCP2P computes these val-
ues dynamically for each cluster and document to satisfy the desired clustering
quality requirements. Due to space limitations, we only provide the final results
of the analysis here. The reader can find the full proofs in [14].

Our analysis uses a probabilistic document generation model [13, 15]. Briefly, the
model assumes that each document belongs to a topic T, and each topic 7; is
described by a term probability distribution ¢; (a language model). A document
of length [that belongs to 7; is created by randomly selecting [terms with
replacement from ¢;. The probability of selecting a term ¢ is given by ¢;.
Notations. Pr.orrect denotes the desired correctness probability, i.e., the proba-
bility of each document to be assigned to the correct cluster. We use
Csor := {c1,...,cr} to denote a snapshot of clusters on an ongoing clustering.

Each cluster ¢; € Cs; follows the language model ¢;. We use t1[¢;], ..., tn[¢:] to
denote the terms of ¢; sorted by descending probabilities. Also, TopDistr(«, ¢;)
denotes the set of «a terms with highest probability in ¢, i.e., t1[d;], ..., ta[d:].
For the case of conservative filtering, a document d is assigned correctly to its
optimal cluster, denoted with cop¢, if copt is detected in the preselection step and
included in Cp,.. The probability that c,p: is included in Cp,. is denoted with
Pryre. Clearly, by setting Prpre = Prcorrect We satisfy the desired correctness
probability. The purpose of the analysis is to find the values of CluT F,,;, and
DocT' F iy that satisfy Prpre.

PCP2P computes these values automatically, as follows. c,p; is retrieved in the
preselection step if there exists at least one term t € TopDistr(a, ¢;) with
TF(t, copt) > CluTFpp, and at the same time TF(t,d) > DocTF,;,. Let
Prfiq denote the probability that each of the terms from TopDistr(«, ¢;) has a
frequency in d of at least DocT Fp;. With Pr;,q we denote the probability that
each term from TopDistr(a, ¢;) has a frequency in ¢,y of at least CluT F,;,.
With Eqn. 4, peers compute the proper values for Prp,qg and Pri,q, such that
clustering succeeds with probability Prp,.. Given these probabilities, each peer
computes the proper values for DocT F,,;, and CluT F,,;, per document and
cluster respectively, according to Eqns. 2 and 3.

The probabilistic guarantees are based on the following theorem.

Theorem 1. Given a document d which follows language model ¢;. The expected
frequency of term t in d according to ¢; is denoted with TAF(t, d). For any term t
with TAF(t7 d) > DocT Fypin, the probability of the actual term frequency TF (¢, d)
exceeding DocT Fyiy is at least 1—exp(—TF(t, d)x (1—DocT Fyip /TF(t, d))?/2).
Furthermore, with a probability Prgng the frequency of term t in d is at least

TE(t,d) — \/2 « TF(t,d) x log (

1
l—Prﬁnd ‘

Sketch. The proof uses the lower-tail Chernoff bound ([12], p. 72) to compute a
lower bound for the term frequency of a term ¢ in d according to ¢;. In particular,
we model the generation of d as independent Poisson trials, using the term
probabilities of ¢;, as is standard in language generation models. Then, we apply
Chernoff bounds to find Pr[TF(t,c;) < DocT F,;y]. Finally:

Pr[TF(t,d) > DocT Fpin] =1 — Pr[TF(t,c;) < DocT Frin]
> 1 —exp(—TF(t,d) x (1 — DocT Frin /TF(t,d))*/2) (2)
The second part of the theorem is derived by solving Eqn. 2 for DocT Fiip,. O

With a similar theorem (see [14]), we can find a probabilistic lower bound for
the frequency of a term ¢ in ¢;:

CluT Fpin = TF(t,c;) — \/2 x TF(t,c;) x log ((3)

1- P?"md)

To compute the expected term frequencies for t,[¢;], i.e., the ’th most frequent
term in ¢;, peers use the Zipf distribution (validated, for example, in [1] for text).

Using Eqn. 3, the cluster holder of ¢; selects CluT Fp.in, such that Pr{TF(ta[¢:], ci) >
CluT Frmin] > Pring. The probability that both d and c,p¢ have a common term
with corresponding frequencies at least DocT Fiy, and CluT Fiin, is at least:
Prye > 1= [(1= PrTF(t;,d) > DocT Frin] X Pring) (4)
Jj=1
Using Eqn. 4, peers set the value of DocT F,.r, per document, 8.t. Prpre > PTeorrect-
Algorithm Configuration. As in standard K-Means, the number of clusters
k can be freely chosen. In addition, PCP2P allows to set the desired correctness
probability Pr.orreci- All other parameters for satisfying the required probabilis-
tic guarantees are derived using the results of our analysis.
First, a few sampled documents are collected from the network and are used to
estimate the Zipf distribution skew. The algorithm then computes the remaining
parameters. By default, « is set to 5, and Prj,q and Pry.. are set to Preorrect. As
shown earlier, these probability values satisfy the desired correctness probability
for conservative filtering. Each peer then computes the proper DocT F,,;, and
CluT Fy,;n per document and cluster which satisfy these probabilities. With
respect to Zipf-based filtering, we offer probabilistic guarantees only for the
preselection step. The above values also satisfy the probabilistic guarantees for
the preselection step of Zipf-based filtering.

5 Experimental Evaluation

The purpose of the experiments was to evaluate PCP2P with respect to effective-
ness, efficiency, and scalability. Effectiveness was evaluated based on a human-
generated classification of documents, using the two standard quality measures,
entropy and purity. Additionally, we measured how well PCP2P approximates
K-Means. With respect to efficiency, we measured number of messages, transfer
volume, and document-cluster comparisons, for different correctness probabili-
ties and collection characteristics. Finally, we examined scalability of PCP2P by
varying the network and collection size, and the number of clusters. In the fol-
lowing we report average results after 10 repetitions of each experiment. Unless
otherwise mentioned, we report results for 50 clusters.

As areal-world dataset, we have used the REUTERS Corpus Volume 1 (RCV1) [10].
We chose RCV1 because it is the largest collection with a classification of arti-
cles, which is necessary for evaluation of clustering. To be able to apply standard
quality measures, we restricted RCV1 to all articles which belonged to exactly
one class (approx. 140000 articles). To systematically examine the effect of the
collection’s characteristics on the algorithm, and to evaluate it with a signif-
icantly larger dataset, we also used synthetic document collections (SYNTH)
with a size of 1.4 million documents each. These collections were created ac-
cording to the well-accepted Probabilistic Topic Model [15] from 200 composite
language models, with different term distribution skews.

We compared PCP2P with two other P2P clustering algorithms: (a) LSP2P [3],
the state-of-the-art for P2P clustering, and, (b) DKMeans, a P2P implemen-
tation of K-Means. DKMeans works like PCP2P, but without preselection and

25

=
o

K-Means, DKMeans

7K-‘Means‘, DKMeans — bonservati}/e .-

S
39+ ive - - - - J <
30 Conservag?él)ef py 2.45 Conservative - - - - 2 gl Zipf ——
> 7 LSP2P 24 Zipf —— S
g 37} 1z g]
e g 235 5 6
2 36 18 - 3
g2t 485 e d 8 4t
2| 1 225 [1 08 [
e o I
) S 22} g 2
18 : . 2.15 — : : : 2 0
0.8 0.85 09 095 200000 600000 1000000 8 0.8 85 09 095
Correctness Probability Number of Documents s Correctness Probability

Fig. 2. Quality: a. Entropy, b. Entropy for different dataset sizes, c. Approximation

filtering, i.e., each compressed document vector is sent to all cluster holders for
comparison purposes before assigned to a cluster. DKMeans was included in our
experiments because it accurately simulates K-Means, i.e., it produces exactly
the same results in a distributed fashion.

5.1 Evaluation Results

Clustering Quality. Figure 2.a plots entropy of all algorithms for the RCV1
dataset (lower entropy denotes better clustering quality). The X-axis is only
relevant to the two PCP2P approaches, but we also include K-Means and LSP2P
results for comparison. For clarity, the Y-axis is discontinuous. For the reported
experiments we have used a network of 10000 peers, with 20% churn. Note that
network size has no effect on the quality of PCP2P and DKMeans.

We see that both PCP2P filtering strategies achieve nearly the same clustering
quality as K-Means. On the other hand, LSP2P, the current state-of-the-art
in P2P clustering, converges to a significantly worse clustering solution, even
for a moderate networks of 10000 peers. LSP2P fails because it is based on the
assumption that each peer has at least some documents from each cluster, which
is unsatisfiable with respect to text clustering 2. Concerning the PCP2P variants,
conservative filtering yields the best (lowest) entropy and the best (highest)
purity, as expected. Zipf-based filtering shows comparable results. The same
outcome is observed with respect to purity: K-Means has a purity of 0.645, and
the maximum relative difference between PCP2P and K-Means is less than 1%.
LSP2P has an average purity of 0.29, which shows insufficient clustering quality.
Since LSP2P fails to produce a clustering solution of comparable quality with
PCP2P and K-Means, we do not include it in our further experiments.

To evaluate the effect of document collection size on clustering quality, we re-
peated the experiment with the SYNTH collection, varying the number of doc-
uments between 100000 and 1 million. The SYNTH collection was generated
as explained earlier, with a term distribution skew of 1.0 [18]. Figure 2.b plots
entropy in correlation to the number of documents, using correctness probabil-
ity Preorrect = 0.9. We see that for PCP2P, entropy remains very close to the
entropy achieved by K-Means, even for the largest collection with one million

3 Note that we reproduced the good results of LSP2P on a smaller network with a
10-dimensional dataset, as reported in [3].

[N
o
o

— — — T . T ——
@ 1 | Conservative - - - - 4) DKMeans () | Conservative - - - -]
S5l Zipf —— I Conservatlvef S s ii . Zipf ——
= X | P4 = Zipf —— = ™ 7
El9r DKMeans: 93 Mil. msgs | -~ E P! E 12|\, [DKMeans: 93 Mil. msgs | |
0 18 1 o 60 | 2 10 \
S17 L o $10 J
=) - = 2 gl
516 | & 40 b
14 L 20 b s 4r
* 13 L L B S e S L ** 2 L L L L L L
0.8 0.85 0.9 .95 25000 50000 75000 100000 05 06 07 08 09 1 11
Correctness Probability Network Size Collection Characteristic Exponent

Fig. 3. Efficiency for varying: a. Prcorrect, b. Network size, c. Term Distribution Skew

Messages Transfer vol.(Mb) Comparisons Entropy
Clusters 25 100 25 100 25 100 25 100

DKMeans 4.66E7 1.86E8 2176 8706 25E5 100E5 2.03 1.61

Conservative 1.45E7 1.70E7 995 2490 568078 1704332 2.08 1.66

Zipf 1.34E7 1.36E7 603 1228 10673 31907 2.12 1.69
Table 1. Cost and Quality of PCP2P and DKMeans for varying number of clusters.

documents. The same applies for purity. This confirms that quality of PCP2P
is not affected by collection size. We also see that for collections with high term
distribution skews (1.0 in this experiment, compared to 0.55 for the RCV1 col-
lection), Zipf-based filtering is nearly as effective as conservative filtering.

Approximation quality. In addition to the standard quality measures, we also
counted the number of documents that PCP2P assigned to a different cluster
than K-Means after each clustering round. Fig. 2.c plots the percentage of mis-
clustered documents for different values of Pr.orrect. As expected, conservative
yields the best approximation, with less than 4% misclusterings even for Prcoprect =
0.8. Zipf-based PCP2P is also very accurate. We also see that the actual number
of misclustered documents for PCP2P is always better than the probabilistic
guarantees, since guarantees refer to upper bounds for number of errors.

Efficiency. We used PCP2P and DKMeans to cluster the RCV1 collection in
a network of 100000 peers, with 20% churn. We did not include LSP2P here,
since it fails with respect to quality, as already shown. Figure 3.a shows the
number of messages required to perform one clustering iteration in correlation
to Preorrect- The plot also includes DKMeans cost as reference. We see that the
two PCP2P variants generate significantly fewer messages than DKMeans. Also,
as expected, Zipf-based filtering is more efficient than conservative filtering. For
Preorrect < 0.9, Zipf-based filtering requires an order of magnitude less messages
than DKMeans, and conservative filtering requires less than 20% of the mes-
sages. The reason for the significantly better performance of PCP2P compared
to DKMeans is that it reduces the number of document-cluster comparisons.
Conservative filtering requires less than 20% of the comparisons of DKMeans in
all setups, whereas Zipf requires less than 1%. Therefore, documents are sent
over the network fewer times. Regarding transfer volume, conservative filtering
requires less than 22% of the respective transfer volume of DKMeans, whereas
Zipf-based filtering requires around 5%.

Scalability. We evaluated scalability of PCP2P with respect to network size,
number of documents, and number of clusters. Figure 3.b shows the cost for
different network sizes. The cost for PCP2P increases only logarithmically with
network size, while cost for DKMeans increases linearly. This behavior is ex-
pected, because the only factor changing with network size for PCP2P is the
DHT access cost, which grows logarithmically. The same behavior is observed
with respect to transfer volume. We do not show quality measures, because they
are independent of the network size. Our experimental results also confirmed
that PCP2P scales linearly with collection size, as shown in Section 3.3. We re-
peated the clustering of RCV1 with 25 and 100 clusters, on a network of 100000
peers. Table 1 summarizes the results. Both PCP2P filtering strategies scale well
with the number of clusters. In fact, network savings of PCP2P grow with the
number of clusters, compared to DKMeans. Regarding entropy, the relative dif-
ference between PCP2P variants and DKMeans is stable. The same is observed
regarding purity (not included in the table). Summarizing, PCP2P approxima-
tion quality is independent of the number of clusters, but PCP2P cost savings
become even higher for a larger number of clusters.

Influence of Term Distribution Skew. PCP2P relies on the fact that term
frequencies follow a Zipf distribution. Although it is accepted that document col-
lections follow Zipf distribution, different document collections exhibit different
distribution skews [1]. For example, the RCV1 collection used in our experiments
has a skew of 0.55, while values reported in the literature for other text collec-
tions are around 1.0 [1,18]. To evaluate the influence of the skew on PCP2P, we
used SYNTH collections generated with different Zipf skew factors, between 0.5
and 1.1. We do not present details with respect to quality, because the quality
of PCP2P was always high and unaffected by the skew factor.

Figure 3.c displays the execution costs in number of messages, for a varying
distribution skew, and for Proprect = 0.9. To achieve the same quality level,
PCP2P cost is significantly lower for higher skews. This behavior is expected:
with higher skews PCP2P needs to perform fewer document-cluster comparisons
for satisfying the probabilistic guarantees. For commonly reported skew values
(around 1.0), the number of messages is reduced by an order of magnitude. But
even for a skew as low as 0.5, the cost of both PCP2P variants is significantly
lower than the cost of DKMeans.

6 Conclusions

We presented PCP2P, the first scalable P2P text clustering algorithm. PCP2P
achieves a clustering quality comparable to standard K-Means, while reducing
communication costs by an order of magnitude. We provided a probabilistic anal-
ysis for the correctness of the algorithm, and showed how PCP2P automatically
adapts to satisfy the required probabilistic guarantees. Extensive experimental
evaluation with real and synthetic data confirm the efficiency, effectiveness and
scalability of the algorithm, and its appropriateness for text collections with a
wide range of characteristics.

Our future work focuses on applying the core idea of PCP2P, i.e., probabilis-
tic filtering, to other clustering algorithms, both for distributed and centralized
settings. Furthermore, we work towards a P2P IR method based on cluster-
ing, similar to [11,17], but now based on PCP2P, a truly distributed clustering
infrastructure.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

C. Blake. A comparison of document, sentence, and term event spaces. In ACL,
2006.

P. Cudré-Mauroux, S. Agarwal, and K. Aberer. Gridvine: An infrastructure for
peer information management. IEEE Internet Computing, 11(5), 2007.

S. Datta, C. R. Giannella, and H. Kargupta. Approximate distributed K-Means
clustering over a peer-to-peer network. IEEE TKDE, 21(10):1372-1388, 2009.

I. S. Dhillon and D. S. Modha. A data-clustering algorithm on distributed memory
multiprocessors. In Workshop on Large-Scale Parallel KDD Systems, 1999.

M. Eisenhardt, W. Miiller, and A. Henrich. Classifying documents by distributed
P2P clustering. In INFORMATIK, 2003.

G. Forman and B. Zhang. Distributed data clustering can be efficient and exact.
SIGKDD Ezplor. Newsl., 2(2):34-38, 2000.

K. Hammouda and M. Kamel. HP2PC: Scalable hierarchically-distributed peer-
to-peer clustering. In SDM, 2007.

B. Haslhofer and P. Knezevié. The BRICKS digital library infrastructure. In
Semantic Digital Libraries, pages 151-161. 2009.

H.-C. Hsiao and C.-T. King. Similarity discovery in structured P2P overlays. In
ICPP, 2003.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: a new benchmark collection
for text categorization research. J. Mach. Learn. Res., 5:361-397, 2004.

J. Lu and J. Callan. Content-based retrieval in hybrid peer-to-peer networks. In
CIKM 03, pages 199-206, New York, NY, USA, 2003. ACM.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala. Latent semantic
indexing: a probabilistic analysis. In PODS, 1998.

O. Papapetrou, W. Siberski, and N. Fuhr. Text clustering for
P2P networks with probabilistic guarantees. Extended version, 2009.
http://www.13s.de/ papapetrou/publications/pcp2p-ecir-ext.pdf.

M. Steyvers and T. Griffiths. Handbook of Latent Semantic Analysis, chapter
Probabilistic Topic Models, pages 427-448. Lawrence Erlbaum, 2007.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In SIGCOMM, 2001.
J. Xu and W. B. Croft. Cluster-based language models for distributed retrieval.
In SIGIR, 1999.

G. K. Zipf. Human Behavior and the Principle of Least-Effort. Addison-Wesley,
Cambridge, MA, 1949.

