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ABSTRACT
Current distributed IR approaches are not readily applica-
ble for P2P scenarios. The high dynamics in these networks
and the high cost for building and maintaining indices over
Distributed Hashtables make full text indexing and informa-
tion processing difficult to scale for large P2P networks. My
work will propose new approaches for enabling distributed
IR over P2P without limiting the network size or mutilat-
ing the IR. The basis of these approaches is an innovative
distributed clustering algorithm, which can cluster peers in
a P2P network based on their content similarity. This clus-
tering enables significant network savings and enables new
families of distributed IR algorithms.

Categories and Subject Descriptors
H.2.4 [Systems]: [Distributed databases]

General Terms
Peer-to-peer, Distributed Information Retrieval

1. INTRODUCTION
The focus of this thesis is to study the problem of efficient

high-quality Information Retrieval (IR) over P2P networks.
My target is to keep the network and hardware load of the
peers at an acceptable level while still enabling quality IR
results, comparable to today’s state-of-the-art centralized
systems. In addition, the proposal needs to gracefully handle
peer churn and keep pace with network growth.

P2P IR is necessary in scenarios where the information is
inherently distributed in many locations. Consider for in-
stance P2P desktop-sharing applications like Beagle++ [1]
or semantic desktop-sharing applications like NEPOMUK1.
Similar scenarios involve P2P digital libraries like the ones
studied in DELOS [2], and P2P social networks [8]. A cen-
tralized IR solution for these systems has serious limitations.

1http://nepomuk.semanticdesktop.org/
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First, it requires all the peers to send all their documents
(or indexes) to a central repository; this comes in contrast
with the systems’ sizes and their promises for robustness,
low cost, and unlimited scalability. Second, the quantity of
the peers’ data, and, most importantly, the large number
of peers, impose challenging network and hardware load on
the machines that host the central repositories. The cost
for maintaining such a data center is significant and cannot
easily be covered from a company for free. The query execu-
tion workload can also be beyond the realistic capabilities of
a single machine or a data center, especially if advanced IR
techniques are required. Third, the expected high churn in
P2P systems creates a situation unlike any previous large-
scale centralized searching systems, e.g., web search engines.
The monetary cost of compensating for churn in the rate of
minutes and not days or weeks is just too high for current
data centers, assuming large-scale P2P networks. For these
applications, a purely P2P IR solution is required.

Most P2P systems implement IR by constructing a dis-
tributed inverted index over a Distributed Hashtable (DHT).
The distributed index maps each term to a list of relevant
peers, their IP addresses and their scores. However, full text
indexing, the basis for high-quality IR, is too expensive for
P2P systems and cannot scale. In fact, it is estimated [14]
that the expected load per peer for a full-text indexing solu-
tion is at least an order of magnitude more than the feasible.

Current P2P IR proposals usually face the above prob-
lem by indexing only part of the peers’ data. For instance,
peers index only a limited number of keywords, only the
documents’ titles or other meta-data. This practice sacri-
fices the completeness of the inverted index and reduces the
IR quality. It also increases the cost of finding satisfactory
results for a query, since an incomplete inverted index typi-
cally does not give the optimal results; unclear or very short
titles, ambiguous terms, absence of keywords can mislead
the ranking algorithm.

Even if the full text indexing problem is solved, the prob-
lem of advanced P2P IR, comparable to state of the art cen-
tralized approaches, is still challenging. Current P2P tech-
niques usually employ a TFxIDF scoring, or something sim-
ilar. They cannot address traditional IR problems, like pol-
ysemy and synonymy, as algorithms for solving these prob-
lems require collection-wide information, i.e., co-occurrence
statistics. Also, they cannot use more complex techniques
for document relevance ranking. Only few systems manage
to deploy advanced IR techniques in distributed P2P (see
Section 2).

Problem Statement: Our work focuses on building an



advanced P2P IR system with a realistic network cost. We
investigate the following problems:

• Reducing the inverted index maintenance cost. The
approaches employed from current DHT-based systems
fail to scale for large collections and networks, mainly
because of the big number of the DHT lookups.

• Increasing the IR quality. Many approaches outper-
form TFxIDF-alike algorithms, but they are not appli-
cable in P2P setups. The P2P overlay proposed here
enables the adaptation of a class of these approaches
with a small execution cost. We will investigate which
of these approaches can be adapted to our infrastruc-
ture and search for new IR approaches that are enabled
from the new cluster-based overlay.

Contribution: My thesis proposes a scalable Peer-to-
peer infrastructure that enables advanced Information Re-
trieval, and imposes low network and hardware load on the
peers. The proposal builds on our recent work [17], which
clusters peers in P2P systems around super-peers based on
content similarity. In summary, each new peer first uses the
DHT overlay to find a cluster and submits its inverted index
to the super-peer of that cluster. In turn, the super-peers
of the clusters publish the keyword scores for each of their
peers, but they take advantage of the keyword overlaps and
the larger but much less network messages to reduce the
total network usage. The new architecture reduces the the
inverted index maintenance cost by as much as one order of
magnitude. At the same time, the workload of the super-
peers remains manageable and is usually even less than the
workload of regular peers in earlier P2P systems.

The new architecture does not reduce the Information Re-
trieval quality as it creates exactly the same full-text in-
verted index as created by previous approaches: a score for
all the keywords in each peer finally gets published at the
DHT. Thus traditional DHT-lookup based query execution
techniques can still be applied. In addition, our approach
paves the road for advanced IR techniques, like semantic in-
dexing, concept indexing, and probabilistic IR, which yield
better IR results than the popular TFxIDF approach. In-
side each peer cluster, the peers can easily solve problems
otherwise difficult to solve over DHTs, like synonymy and
polysemy. IDF weighting and novelty estimation can also
be inexpensively applied inside each cluster.

The next section discusses the state-of-the-art in the area.
Section 3 describes our contribution, giving emphasis to the
finished tasks and results. We conclude with Section 4,
which describes the foreseen tasks for enabling advanced
P2P IR.

2. STATE OF THE ART
This thesis contributes to the areas of IR, P2P IR, and

distributed clustering. We will now review the main related
works from these areas, and explain how they can be applied
in or enhanced by our research.

Centralized Information Retrieval: A very interest-
ing work on IR is built around Semantic Analysis. Latent
Semantic Analysis (LSA) [5] uses singular value decompo-
sition for extracting the most important dimensions from
a collection and reducing the document representations to
these dimensions. LSA also addresses the polysemy and syn-
onymy problem, and gives relevance rankings superior to

the rankings of most methods operating on full document
dimensions. A work by Papadimitriou based on random
projection [16] also makes the LSA execution on large col-
lections computationally feasible. However, it is still very
difficult to apply LSA in a P2P setup because it requires
system-wide information. In section 4 we show how to over-
come this problem without the need of a central repository.

Karypis and Han present concept indexing [11], a Seman-
tic Analysis approach with results comparable to LSA re-
sults. Concept indexing is based on document clustering,
has low execution cost and scales well with the number of
documents. Although concept indexing is not applicable in
P2P setups, it is useful for our work. A result from [11]
is that few of the clusters’ keywords are responsible for a
large percentage of the total cluster length. If we detect
these keywords, we can use them to index the peer clusters
and perform distributed clustering. We can also use a sim-
ilar approach for reducing the document dimensions if the
document clusters and their centroids are already in place.

P2P Information Retrieval: P2P IR focuses on two
main problems: (a) efficiently selecting the relevant peers
for routing the query to them (collection selection problem),
and (b) executing the queries in the peers, and merging the
results.

The dominant approach for addressing the collection se-
lection problem is by maintaining a system-wide inverted in-
dex over a DHT: upon joining the network, each peer joins
the DHT and publishes its data in the distributed inverted
index. In this text, we refer to this approach by the name
Flat DHT, as it does not use an intermediate layer between
the peers and the DHT to optimize the index maintenance.

The granularity and completeness of the inverted index
varies from system to system. Peers in the ALVIS sys-
tem [3] index the keywords for each of their documents inde-
pendently (document-granularity index). The Minerva sys-
tem [4] reduces the index size by indexing peer scores; the
peers aggregate their documents’ scores per keyword to pro-
duce a single score per keyword. But the network cost for
full-text indexing is still too high [14, 18], even with peer
granularity data. The main part of the network cost is gen-
erated by the huge number of the DHT lookups.

The new version of ALVIS [19] increases the inverted in-
dex scalability by: (a) publishing only the top relevant doc-
uments per peer for each keyword, and, (b) identifying the
highly discriminative keys, which may be two or more words
together, and also publishing these in the inverted index.
The extension limits the size of the inverted index and speeds
up the query execution process. However, it does not reduce
the number of the required DHT lookups. An optimization
in the P-Grid DHT layer can partially alleviate the problem
by packing many small DHT messages together [12]. How-
ever, this optimization is orthogonal to ALVIS publishing al-
gorithm, and can be used to further optimize any approach,
including the one proposed in this work.

To reduce the high network cost, some other systems do
an initial filtering of terms; each peer only publishes the
most important terms (e.g., only the terms occurring in the
document titles and/or abstracts). Organizing the peers
into ontologies [9], or asking each user to manually select
the keywords for her files [6] is also suggested in the litera-
ture. The systems in this family are scalable, as they restrict
the DHT maintenance cost drastically. However, they are
not oriented towards full text search, and they cannot of-



fer advanced IR. Moreover, the manual keyword selection is
troublesome for the user and an automatic keyword filtering
cannot be executed efficiently in a distributed network as it
demands global system information (IDF values).

Some P2P IR systems do not use keyword indexing at
all. Nottelmann and Fuhr [15] build an IR system over a
hierarchical P2P network. The peers there do not maintain
a distributed index; instead, some super-peers are assigned
the responsibility to keep their peers’ summaries, and to
forward the queries to the most related of their peers, or
to other super-peers. In addition to the infrastructure, the
authors present a decision theoretic model for optimal P2P
query routing. For selecting the peers for each query, their
model considers the cost of query routing and the expected
results from each peer. The approach gives expected optimal
query results for the query execution cost. This work is very
important for our research, as it is one of the few works
proposing probability-based query routing in P2P systems.
It is also the only work which considers the querying cost
per peer for reducing the overall cost without sacrificing the
quality of the results. However, the focus of our work is on
DHT-based P2P systems. The major cost in these systems
is the indexing cost, where each peer indexes its collection in
the distributed inverted index. Our cost model will combine
the DHT indexing cost and the query execution costs.

pSearch [20] system also avoids term indexing. The work
proposes two alternatives for indexing the documents in P2P.
The first one, pVSM, is based on the Vector Space model,
while the second one, pLSI, reduces the document dimen-
sions using Latent Semantic Indexing. The main problem in
both the approaches is the high network cost. In addition,
pLSI assigns the LSA computation to a single peer, which
causes a bottleneck for big networks. Also, the proposed
load balancing causes a huge increase of the network cost.

Distributed Clustering: The main indexing approach
proposed here is based on P2P text clustering. There are
several distributed clustering algorithms, but most of them
have high communication requirements, especially when the
data dimensionality is high, e.g., in text clustering. A P2P
clustering approach is proposed by Datta et al. [7]. The al-
gorithm employs gossiping for the distribution of the cluster
centroids. Each peer performs a local K-Means clustering
and then broadcasts its centroids at its neighbors. Then, it
averages the centroids received from its neighbors with its
own centroids to produce its new centroids, and repeats the
process. The algorithm is accurate and uses only local com-
munication. However, it is tested only with low dimensional
data (10-dimensional synthetic data). It also requires too
many iterations. Furthermore, the practice of transmitting
centroids instead of document summaries is suboptimal for
P2P systems, where peers usually publish a small number
of documents, less than the number of clusters.

A more recent P2P clustering approach proposed by Ham-
mouda and Kamel [10] uses a hierarchical topology for the
coordination of K-Means. Peers are organized into small
neighborhoods, and each neighborhood performs a local K-
Means clustering. The results are merged hierarchically to
give the final k clusters. However, this hierarchical merging
causes a significant clustering quality loss, thus the algo-
rithm cannot be used in large P2P networks. In our work
we propose a novel P2P clustering algorithm which addresses
the limitations of the previous algorithms. The algorithm is
based on a DHT inverted index and can be executed with a

very small cost.

3. PCIR: A P2P IR INFRASTRUCTURE EM-
POWERED FROM PEER CLUSTERING

Our proposal, PCIR (short for Peer Clustering Informa-
tion Retrieval) combines peer clustering and an inverted in-
dex over a DHT (fig. 1). A new peer first joins the DHT, yet
without publishing its contents. Following, it discovers and
joins a suitable cluster of peers (Section 3.2), and sends its
inverted index to the super-peer of that cluster (Section 3.1).
In turn, the super-peer of each cluster publishes the inverted
indices of all the cluster peers to the DHT, but now by taking
advantage of the overlapping content in the peers to opti-
mize the publishing (Section 3.1). The peer clustering and
DHT publishing steps are repeated periodically to compen-
sate churn. The total number of clusters is also dynamically
adapted to the number of peers and the diversity of their
collections.

Note that super-peers in PCIR publish the detailed in-
verted indices of all their peers, not an aggregated cluster
index; this way they generate exactly the same DHT-based
inverted index as with previous full-text DHT approaches.
Thus, the traditional P2P query execution techniques can
be applied and the query execution cost and IR quality are
not affected from the PCIR infrastructure.

P1

P27

P19

P12

P11

P7

P3

P2

DHT Layer

Politics
Nejdl

P4

Football

Volley
Elections

Cluster Layer

P4

P1 P3 P27
P2

P19

P13 P7

P11

P12

Politics
Politics

Elections

Elections Politics

Volley
Football

Volley
ChickenFootball

Volley

Gottlob

Aberer

Nejdl
Gottlob

Aberer
Nejdl

Nejdl
Gottlob

AbererFootball
Chicken

Chicken

Figure 1: The two-layer architecture combines peer
clustering and an inverted index over a DHT (Super-
peers are gray shaded)

The DHT overlay, i.e., Chord, is used for building the key-
word inverted index. Both super-peers and regular virtual
peers participate in the DHT and contribute their resources
to store part of the inverted index. We now describe the
inverted index maintenance and the the peer clustering al-
gorithm. Although in practice the peer clustering precedes
the inverted index maintenance, they are discussed in reverse
order here for the sake of clarity. We continue with the ex-
perimental evaluation and an outline of our future tasks for
further reducing the maintenance cost in PCIR.

3.1 Inverted index maintenance
We assume that the peers have already formed clusters,

and each cluster has a super-peer. Then, all the peers filter
out the stopwords from their local collection and perform



stemming. Following, they send their Peer Content Sum-
mary (PCS) to their responsible super peer. The PCS is a
list of terms with their term frequencies in the peer(fig. 2).

Each super-peer then merges all the PCS to create the
cluster inverted index (fig. 3), which maps each term to a list
of the relevant peers in the cluster and their peer frequencies
(the Peerlist of the term). Following, the super-peers look
up the terms at the DHT. For each each term, they find the
responsible peer in the DHT and they submit the Peerlist for
their cluster. Note that the Peerlist for a keyword includes
the keyword scores per cluster peer separately, it is not an
aggregated cluster score. For the λ most frequent keywords
in the cluster they also submit the cluster score. A cluster
score for a keyword is the average frequency of that keyword
in all the cluster peers. These cluster scores are used for effi-
cient peer clustering (explained in next section). Publishing
of these scores generates only λ additional records per clus-
ter in the DHT and requires no additional DHT lookups.
The resulting inverted index structure is similar to the one
in fig. 4 (cluster scores appear gray-shaded). In our imple-
mentation, the peer and cluster scores are normalized to the
peer resp. cluster length, to account for peers/clusters of
different lengths. For clarity we abstract from details of the
normalization in this paper.

Peer Content Summary
Term PF
Football 12
Chicken 3
Volley 13
. . . . . .

Figure 2: The Peer Con-
tent Summary is a (term,
peer frequency) matrix,
for all the peer terms

Cluster Inverted Index
Term Peer PF
Football Peer1 12

Peer7 9
Volley Peer27 13
. . . . . . . . .

Figure 3: The Cluster In-
verted Index stores the
PeerLists for all the clus-
ter keywords

Keyword Peer PF Super-peer
Football Peer1 12 P4

Peer3 9 P4

Peer9 1 P9

ClusterScore 7 P4

Volley Peer1 11 P4

. . . . . . . . .
. . . . . . . . . . . .

Figure 4: Logical Top DHT Routing Table for
clustering-enhanced approach

The above steps are repeated periodically to compensate
churn. In this way, the distributed inverted index does not
need to be updated every time a peer leaves or fails. Instead,
its postings expire and are removed from the inverted index.

The clustering-enhanced approach reduces the DHT main-
tenance cost by an order of magnitude compared to the flat
DHT maintenance algorithm (e.g., Minerva). The main rea-
sons for this drastic reduction are the following three:

1. The number of the required DHT lookups is drastically
reduced since only one lookup is executed per distinct
cluster keyword.

2. The publishing messages for a keyword are now packed
together for all the peers in the cluster, requiring less
messages and causing less network overhead.

3. The size of the messages is further reduced with com-
pression. Message compression does not have positive
effects in the case of flat DHT systems, since the mes-
sages there are very small to be compressible.

Both regular virtual peers and super-peers benefit from
the network optimizations. In fact, in all our experiments
(see Section 3.3), the average network load (both number
of messages and transfer volume) in the super-peers in the
clustering-enhanced approach is even below the load of the
peers in the flat DHT scenario. In the large networks ex-
periments (more than 3000 peers), the super-peers have on
average less than 50% of the network load of regular peers
in the Flat DHT. The reduction in the super-peers load is
attributed mainly to the significant reduction of the DHT
lookups, which equally affects all the participating peers.

3.2 Distributed P2P Clustering
The clustering overlay is built incrementally in a distributed

fashion, based on the contents of the peers. A new peer finds
and joins a cluster as follows. First, the peer joins the DHT,
but without publishing any data. Then it finds its top-λ
frequent keywords, and it looks them up at the DHT to dis-
cover the clusters that have published a ClusterScore (not
a normal peer score) for at least one of these keywords in
the DHT. If such clusters exist, the peer retrieves the clus-
ter scores for these keywords (e.g., the gray-shaded row in
fig. 4), and computes a partial cosine similarity for each can-
didate cluster (based only on its top-λ keywords).

If no clusters are retrieved from the top-λ keywords lookup,
the new peer creates its own cluster and becomes the super-
peer. But if candidate clusters are retrieved, the top-µ most
similar ones are found, based on their partial cosine similar-
ity with the peer’s collection. Then, the new peer sends a
compact summary of its collection (as a bloom filter) at the
super-peers of these clusters. The super peers use the sum-
mary for estimating the term overlap between the cluster
centroid and the peer collection. The peer retrieves these
scores from the super-peers, and uses them to select and
join the most similar cluster. At the end of the clustering
algorithm, each peer belongs to one cluster, and each cluster
will have a super-peer.

Clustering is repeated periodically to compensate churn.
The number of clusters constantly adapts to the present
peers and their data. The super-peers also change regularly,
thus the super-peer workload is evenly distributed among
all peers.

The peer clustering algorithm is inexpensive in network
resources. The total cost for clustering a new peer is O(λ ∗
log(n)+µ) messages (λ and µ are typically less than 5). The
values of λ and µ are important for our algorithm. Too small
values can result to a clustering of inferior quality, thus less
keyword overlaps in the super-peers, while too large values
result to large communication costs, making the approach
less appealing for P2P. We are working on a complete system
model which will allow us to optimize these values given the
size of the network and the keyword distributions. However,
large-scale experimental evaluation with real data has shown
that λ and µ less than 5 already result in good clusterings.

Bloom filter representations: Bloom filters can com-



pactly represent a set of objects, i.e., words, especially when
there is error tolerance. We use bloom filters for represent-
ing cluster and peer centroids. Instead of transmitting the
centroids over the network, we send their bloom filter repre-
sentations. The bloom filters are created by hashing all the
cluster resp. peer keywords. They are used for estimating
the keyword overlap between a peer and a cluster, as we
show in [18].

Managing Peer Collection Diversity by Virtual Peers:
Real-life peer collections, as real persons’ interests, are often
diverse with respect to their topics; a peer may collect doc-
uments about many different, even orthogonal topics. Find-
ing the best cluster for a multi-thematic peer is difficult.
We solve this problem by employing document clustering for
splitting a peer to a set of virtual peers, each with more ho-
mogeneous documents. First, the documents in a peer are
clustered using a partition clustering algorithm, and each
document cluster is assigned to a virtual peer. Then, each
virtual peer proceeds independently, joins the best match-
ing peer cluster for its documents, and posts its contents at
the super-peer of that cluster. This increases the keyword
overlap in the super-peers and reduces the inverted index
maintenance cost.

The document clustering method can vary. Document
clustering in this work was performed with K-Means. In a
previous work [17] we performed the document clustering
using the MeSH ontology, with similar results.

Load Balancing: The popularity of subjects is not uni-
form. It is thus natural for a meaningful clustering algorithm
to produce clusters of non-uniform sizes, and among them,
some large clusters. The super-peers of these large clusters
can still cause bottlenecks due to their cluster sizes. We
solve this problem by restricting the maximum cluster size.
Each super-peer sets the maximum number of peers in its
cluster, so that no cluster becomes difficult to manage. The
solution has only a slight performance penalty (see [18]), but
it manages to distribute the load evenly among super-peers.

Next steps on Distributed Clustering.
Distributed P2P clustering can be useful in other contexts,

so we continue our work on it. We now focus on dynamically
adjusting the values of the parameters (λ and µ) based on
the probability of correct clustering to occur. In particular,
we use statistics from the peer collections to decide on the
cutoff thresholds. Having said that, we should stress that
errors in the clustering algorithm for PCIR do not mean er-
rors in query execution; the only penalty that comes from
a clustering error is less keyword overlap in the super-peers,
thus slightly more messages. In fact, in the theoretical sys-
tem model that we currently work on, we are not reducing
the clustering errors, but the overall network cost.

3.3 Experimental Evaluation
We evaluated our approach experimentally using the first

160,000 documents from the Reuters Lyrl2004 document col-
lection[13]. The documents belonged to a total of 148 cate-
gories and each of the used categories had at least 400 doc-
uments. Some of these categories were very broad, while
others were very focused.

Building the peer collections: Real-life peer collec-
tions, as in real personsŠ interests, are often multi-thematic.
Some users may be well-focused, having very specific docu-
ments of only one topic. Other users may focus on a couple

of non-related topics, while still others may just collect many
diverse documents. We simulated all such kinds of users by
using the 148 Reuters categories. Each peer was randomly
selecting 3 of the 148 categories, and then 20 random doc-
uments for each category. At the end, a total of 60 distinct
documents were assigned to each peer.

In particular, we compared the following approaches:

Flat DHT: The flat DHT publishing, where each peer pub-
lishes its own collection directly to the DHT inverted
index. The flat DHT publishing serves as the baseline.

PCIR: The PCIR approach. We use bloom filters of length
128Kbits and 3 hash functions, and break each real
peer to 3 virtual peers using K-Means. We set λ = 6
and µ = 2.

Random: The PCIR approach with random peer grouping.
The peers do not break to virtual peers, and they form
random groups instead of semantic clusters. Each peer
randomly selects and joins a peer group. The super-
peer of each group again updates the inverted index for
the peers in the group. We implement this approach
to evaluate the effect of peer clustering on PCIR.

We constructed networks of the following sizes: 500, 1000,
2000, 3000, 4000 and 5000 peers. Each experiment was ex-
ecuted 8 times and the average costs were taken over all
executions.

Each setup was let to run for 4 iterations/periods. The
experiments were repeated with and without churn. We
implemented churn by randomly selecting 20% of the peers
from all the setups at every iteration/period, and replacing
them with new ones. In PCIR, in order to avoid data loss
from the peer churn, when a super-peer was selected to be
replaced, it first had to publish the cluster’s inverted index
at the DHT and then depart. The costs for publishing were
added to the total network costs for the setup.

We measured and compared the following network re-
quirements: (a) number of messages, and (b) transfer vol-
ume. All the network traffic was measured, except of the
traffic for building the Chord ring. The cost for building the
Chord ring was exactly the same for all the 3 approaches
(and for all structured P2P systems), thus it was ignored.

Results: As expected, churn did not have an impact on
the network usage for the Flat DHT approach, because of
the periodic republishing. It slightly affected the PCIR con-
figurations because when a super-peer was selected to be
removed, it had to publish all the cluster’s data at the DHT
prior disconnection. This caused duplicate peer score pub-
lishings in some cases. However, since the difference between
the results with and without churn was less than 3%, we only
report the results of the experiments with churn.

Figure 5 plots the network requirements for each setup.
For illustration purposes, we normalize the network cost in
each setup using the network cost of the Flat DHT setup
as a baseline (100%). The other costs are presented as per-
centages of the network cost of the Flat DHT approach.
The absolute average values per peer for these setups are
presented in table 1.

Even by random peer grouping, the network savings are
significant; for the 5000 peers setup the random grouping ap-
proach has a network cost around 18% of the flat DHT cost.
The network savings for the PCIR approach are more. In
the larger networks, the PCIR approach has around 5% less
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Figure 5: Network usage. The figure is annotated
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network cost compared to the random grouping approach,
and about one order of magnitude less cost than the flat
DHT approach.

Peers Number of Messages Transfer Volume (Kbits)
F R C F R C

500 17314 5929 4546 701 257 216
1000 19404 5663 3982 783 247 193
2000 21214 4936 3383 854 218 170
3000 22346 4587 3112 898 204 159
4000 23167 4389 2936 930 196 152
5000 23782 4190 2811 954 188 147

Table 1: Average cost per peer: F:Flat DHT | R:
PCIR Random | C: PCIR Clustering

All the experiments were repeated with the load balancing
extension, and the results were similar to the above; the
extra cost introduced from the load balancing was negligible.

We also investigated how the load of the peers in PCIR
that host a super-peer compares with the load of regular
peers in the flat DHT approach. We measured all the net-
work messages that the super-peers send or receive in PCIR,
and likewise for the flat DHT peers. In both the setups each
message was measured twice, once in the sender and a sec-
ond time in the recipient. For PCIR in particular, since
each peer consisted of 3 virtual peers, the network load of
the peers that were hosting a super-peer was computed by
summing the network loads of all their virtual peers (super-
peer and regular virtual peers). Figure 6 summarizes the
results. An important observation is that the average super-
peer load still remains below the average regular peer load
in the flat DHT scenario for all the setups. This reduction is
attributed to the significant reduction of the DHT lookups
in PCIR, which equally affects all the participating peers.
In the smaller setups, the super-peer network load (both
number of messages and transfer volume) is around 50% of
the average peer load in the flat DHT approach. For the
larger setups, the super-peers handle as much as 2/3 less
network messages compared to the messages handled by the
regular peers of the flat DHT approach. As far as the trans-
fer volume is concerned, the load in PCIR super-peers still
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Figure 6: Network load of super-peers in PCIR and
regular peers in flat DHT

compares favorably with the load in the flat DHT regular
peers, but not with as much difference as before. The main
reason for this change is that some messages received by
the super-peers in PCIR are large (the messages between
the super-peer and the regular virtual peers), while in the
flat DHT all the messages are approximately of the same
size. While for our setups this was never a problem for the
super-peers (they always handled less network transfer vol-
ume compared to the flat DHT peers), evenly distributing
the super-peer workload is part of our current work. In any
case, each of the super-peers can control its network load
by setting a strict upper limit on the size of its cluster (the
load balancing mechanism). Thus the super-peers in PCIR
do not risk getting overloaded.

The reader can find a detailed description of the evalua-
tion methodology and further interesting results (including
experiments with the Medline collection and other bloom
filter lengths) in [18]. In the same document we present a
cost analysis, which gives an insight for the results presented
here.

3.4 Next steps on PCIR
Load Balancing: We now work on the load balancing

between the regular peers and the super-peers. While the
super-peers in PCIR still have less network load than the
load of regular peers in flat DHT systems, they have more
network load compared to the load of regular peers in PCIR
(see figure 6). This can be a deterrent for a peer to become
a super-peer. For equally distributing the workload at the
peers, we can build an internal DHT in each cluster and use
it for distributing the responsibilities of the super-peer at all
the cluster peers. Each of the cluster peers is assigned the
task of publishing at the top DHT all the cluster keywords
that hash into a specific range. While this introduces a
small DHT for each cluster, the extra costs are less than the
savings from PCIR. In particular, the maximum number of
messages that need to be exchanged for the intra-cluster
maintenance for a cluster C is O(‖C‖2), but since clusters
are deliberately kept small, this cost is not high. Having a
cost model, we can also compute the optimal cluster sizes
that minimize the publishing cost for an expected keyword
frequency distribution (i.e., Zipfian).



Dynamic Network Optimization: The performance
of cluster-based PCIR is strongly dependent on the values
of λ and µ. As already noted, if these values are high, better
clustering is performed and the publishing value is reduced.
On the other hand, the clustering cost increases in paral-
lel to these values. While finding the cost model for the
system is not difficult, theoretically deciding on the opti-
mal λ and µ values which would minimize the overall cost
(both clustering and publishing) requires a relation between
the distribution of keywords in the peers and the number
of distinct keywords in the cluster. For the empirical Zipf
distribution, this relation is very difficult to estimate. Thus
we are currently focusing on experiments which will allow
us to see how ’far from the optimal’ is a setup with generic
λ and µ values for different data collections. If this perfor-
mance difference justifies dynamic network optimization we
will continue our effort on estimating the relation between
the number of distinct keywords in a cluster and the peers’
keyword distributions.

The periodicity trade-off (index accuracy vs maintenance
cost) is also very important on the system’s configuration. A
very small republishing period can increase the index accu-
racy in expense of the maintenance cost. Ideally the system
should be able to adjust the length of the republishing period
for providing the required accuracy at a minimal cost. For
this, the system needs to keep statistics on the peer churn,
and adjust the length of the publishing period accordingly.

Indexing throughput evaluation: Until now the ex-
periments measure only the network cost, not the time for
completing the index. It would be interesting to run the
experiments on a large-scale distributed platform like Plan-
etlab. This will allow us to account further network factors,
like network distance and peer bandwidth, and see how im-
portant it is to take these factors into account. Furthermore,
it will enable larger experiments with more peers and docu-
ments per peer.

Unstructured P2P systems: Some P2P scenarios are
incompatible with DHTs. For instance, when the peer and
document churn is very high, the cost of maintaining the
DHT can be prohibitively expensive. Especially when the
application scenario does not require exact answers or when
the query frequency is very low, we consider replacing the
full-text index with an unstructured network. Unstructured
P2P systems have difficulties scaling to large networks be-
cause the IR quality in these systems suffers. In our ap-
proach, due to the peer clustering, the relevant peers for a
query are all expected to belong in the same cluster (or few
clusters). Thus, it suffices for our approach to find only a
single link for routing the query inside the right cluster(s).
Then, the query can be sent to all the peers of the cluster.

4. INFORMATION RETRIEVAL IN PCIR

4.1 Current IR algorithm
Our focus up to now was more on reducing the inverted

index maintenance cost, and not so much on enabling ad-
vanced IR. Our current query execution algorithm resembles
the keyword-based query execution used in previous sys-
tems, like, e.g., Minerva [4]. The query initiator looks up
the query keywords in the DHT (Fig. 4) and retrieves the
Peerlist for each. From the Peerlists, it discovers the most
promising peers and routes the query to them. The peers
independently execute the query and return their results to

the query initiator.
The query execution algorithm is highly configurable. We

currently use a simple cosine similarity as a ranking function
for both peers and documents. It is however easy to replace
it with CORI, BM25 or any other ranking function. Com-
puting or estimating the IDF/IPF which is required from
these ranking functions is a notorious issue, common to all
the P2P systems. Any existing solution or approximation
can be used orthogonally to PCIR.

Note that the DHT-based inverted index produced from
PCIR is of the same quality and resolution as the one con-
structed by any flat DHT peer-granularity maintenance al-
gorithm (e.g., Minerva): the detailed peer scores (not only
the cluster-aggregated scores) for all the peers are published
in the DHT. Thus, the information retrieval quality is not
affected by the PCIR enhancement. Also, the query execu-
tion cost is the same as in other DHT-based approaches, be-
cause the promising peers are detected and queried directly
from the query initiator without any intervention from the
super-peers. As such, we do not perform a query execution
evaluation in this work.

4.2 Tasks for enabling Advanced IR
We are now working towards enabling advanced P2P in-

formation retrieval with reasonable costs. For this goal, the
proposed peer clustering architecture can prove very helpful.

Cluster hypothesis and cluster-based IR.
An approach we currently study stems from the cluster

hypothesis: documents that are clustered together tend to
be relevant to the same query requests [21]. We now in-
vestigate whether the cluster hypothesis applies to our sce-
nario, and study the keyword distributions (frequencies) in-
side each cluster. If the cluster hypothesis is applicable, we
can further limit the size of the DHT inverted index: in-
stead of maintaining the full inverted index for query rout-
ing purposes, the peers can maintain an inverted index with
cluster aggregated data, like minimum, maximum and aver-
age peer frequency values, or even histograms. The cluster-
granularity inverted index can be used for routing queries to
clusters. For instance, given a query, if the computed cosine
similarity for a cluster using the maximum values is less than
the computed cosine similarity for another cluster using the
minimum values, then no peer in the first cluster needs to be
queried. After the queries are routed inside the clusters, the
super-peers can handle further routing of the queries at the
cluster peers; they already have all the peer content sum-
maries, so no further network cost is induced, and the cost
of maintaining the DHT is reduced significantly.

Intra-cluster IR: Inside each cluster, we can also apply
more complex IR techniques. The super-peers have all the
necessary data for applying centralized IR techniques, like
Latent Semantic Analysis, for all the cluster peers. And un-
like previous P2P LSA implementations [20], this approach
will not suffer from scalability issues; the clusters are delib-
erately kept small and manageable, thus the LSA computa-
tion for only the cluster data will have low computational
requirements. For avoiding the overload of the super-peers
during query execution, the LSA transformation can also
be sent to all the cluster peers, so that any peer inside the
cluster is equally able to answer and route any given query.
Thus, query execution does not need to be routed through
the super peers; any cluster peer will be able to execute it



or route it to the most relevant cluster peers.

Distributed Probabilistic IR.
Another approach with cluster granularity data involves

probabilistic IR along the lines of the Decision Theoretic
Framework (DTF). Nottelmann and Fuhr in [15] already
successfully used DTF to enable a probabilistic selection of
P2P digital libraries for query execution. Applying their
work in PCIR, the super-peers can publish the contents of
their clusters as compact term frequency distributions (we
can approximate them with histograms or in a similar man-
ner as in [15]). Then the query initiator will be able to make
a formal decision on the top most promising clusters and on
the top most promising peers per cluster to be queried.

We can further extend the DTF approach, so that it also
takes into account the peer clustering and indexing cost
(these costs are not relevant to the original work). Then,
assuming a certain ratio of queries per republishing period,
the super-peers can decide how detailed the cluster publish-
ings need to be, so that the overall system cost is optimized.
Such a model can also lead to formal decisions for the clus-
tering step for optimizing the cluster structure (e.g., break
too unfocused clusters or devote more resources on getting
a better peer clustering result) so that querying can finish
faster.

Distributed dimensionality reduction.
Another IR approach that we will consider is concept in-

dexing [11]. Concept indexing was also used in the past for
increasing the IR quality in clustered data. The advantage
of concept indexing is that it can be used for both clustering
of new peers, and also for answering queries. In addition,
it is not sensitive to the quality of the clustering solution.
Our approach is suitable for direct application of concept
indexing, since clustering is already in place.

5. WORKSHOP FEEDBACK
The main feedback received from the workshop was for the

importance of a theoretical system model, which can be used
for minimizing the network cost. Namely, the performance
of PCIR depends on 3 system parameters, λ, µ and the res-
olution of the bloom filter representations of the peers. We
have shown that generic values for these parameters result
in significant performance improvements compared to the
flat DHT case.

In detail, we have seen that increasing the values of λ and
µ, as well as increasing the resolution of the bloom filter rep-
resentations for the peer contents, increases the probability
of a peer to find and join the right peer cluster. However,
this comes with an increase in the peer clustering network
costs, which at some point outweigh the benefits of better
peer clustering. A model can: (a) give the probability of
correct clustering to occur, and (b) give the optimal values
for λ and µ for minimizing the total network cost.

A second comment was about the process of breaking each
peer to virtual peers. We currently employ the standard K-
means algorithm, with a fixed k = 3 for all the peers. In real
P2P networks, each peer will need to decide for the value of
k based on its collection diversity and size. We are currently
investigating this problem.
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