Optimizing Distributed Joins with Bloom Filters

Sukriti Ramesh, Odysseas Papapetrou, Wolf Siberski

Research Center L3S, Leibniz Universitiat Hannover
{ramesh,papapetrou, siberski}@13s.de

Abstract. Distributed joins have gained importance in the past decade,
mainly due to the increased number of available data sources on the
Internet. In this work we extend Bloomjoin, the state of the art algo-
rithm for distributed joins, so that it minimizes the network usage for
the query execution based on database statistics. We present 4 exten-
sions of the algorithm, and construct a query optimizer for selecting the
best extension for each query. Our theoretical analysis and experimen-
tal evaluation shows significant network cost savings compared to the
original Bloomjoin algorithm.

1 Introduction

With the advent of the Internet, the execution of database queries over the
network has become commonplace. One of the main challenges in distributed
query processing is efficient execution of distributed joins. This is especially
important for information fusion from large-scale scientific data sources, such as
Gene and medical databases. The Semantic Web which aims at Web-scale data
fusion also relies on efficient distributed joins.

As network cost is the dominating cost factor in distributed join execution,
prior algorithms focus primarily on its reduction. With semijoins [1], the nodes
first exchange only the primary keys and attributes required for the joins, and in a
second step collect the remaining attributes for answering the query. Hash-based
semijoin algorithms [7] are similar to semijoins but they send compressed/hash
representations of the attributes instead of complete tuples. Bloomjoins [4], a
specialization of hash joins, use Bloom filters to compress the join-related at-
tributes. This approach reduces the required bandwidth significantly and can be
seen as current state of the art.

As we show in this paper, the Bloomjoin algorithm can be improved further
for equi-joins by taking basic database statistics into account. Our contribution
is twofold. Firstly, we present four alternative hash-based semijoin strategies and
show an in-depth cost analysis for each of them. The results of this analysis are
used by a query optimizer to choose the most efficient processing strategy for
the join query at hand. Secondly, we show how to dynamically compute the
optimal Bloom filter length for a given query based on selectivity, for each of
the proposed strategies. Both contributions reduce network costs for distributed
joins significantly.

Section 2 summarizes the related work, with a special focus on Bloomjoins,
the basis of this work. Section 3 formalizes the problem and introduces the
notation used throughout the paper. The proposed techniques, including their
cost expressions, follow in sections 4 and 5. Section 6 models a query optimizer
for selecting which of the proposed techniques should be used in each scenario.
We finish with an experimental evaluation of the techniques and the conclusions.

2 Related work

Distributed query processing has been extensively studied in the past. A broad
summary of query processing techniques for structured data at several sites is
provided in [3]. This survey also shows how query processing and data replica-
tion and caching interact. Several techniques based on existing algorithms for
optimizing queries in distributed databases have been proposed in [8].

Bloom Filters. The Bloom filter data structure was proposed in [2], as a space-
efficient representation of sets of elements from a universe U. A Bloom filter
consists of an array of m bits and a set of k£ independent hash functions F' =
{f1, f2 ... fr}, which hash elements of U to an integer in the range of [1, m]. The
m bits are initially set to 0 in an empty Bloom filter. An element e is inserted
into the Bloom filter by setting all positions f;(e) of the bit array to 1.

Bloom filters allow membership tests without the need of the original set.
For any given element e € U, we conclude that e is not present in the original
set if at least one of the positions computed by the hash functions of the Bloom
filter points to a bit still set to 0. However, Bloom filters allow false positives;
due to hash collisions, it is possible that all bits representing a certain element
have been set to 1 by the insertion of other elements. Given that r elements are
hashed in the filter, the probability that a membership test yields a false positive
is p ~ (1 — e ¥7/™)*_The false positive probability is minimized by setting the
number of hash functions to k ~ = * In(2).

Bloomgjoins. The Bloomjoin algorithm [4] was proposed in 1986 as a scheme for
efficiently executing joins in distributed databases. Given tables T7 and T5 that
reside in sites Site; and Sites respectively. For executing the equi-join 77 xq To
on attribute a, the Bloomjoin algorithm proceeds as follows. Site; prepares the
Bloom filter BFr, of the records of T by hashing 7,(7T1) (the a values of each
record), and sends it to Sites. Sites uses BFp, to filter out all the records that do
not belong to the Bloom filter, i.e., T5.a is not hashed in BFp,. It then sends the
remaining records to Site;, where the join is executed and the results computed.

The Bloomjoin algorithm is extensible to more than 2 sites, and can handle
joins that include selections, e.g., (0,=1011) X, T2 Xy oy=0T5. However, the
algorithm does not specify how to minimize the network cost by varying the
Bloom filter configuration. As we show in this work, setting a constant Bloom
filter length and number of hashes is not network-efficient. The optimal config-
uration depends on: (a) the table structures, (b) the number of records in each
table, and (c¢) the join selectivity.

3 Preliminaries

Problem Definition. Given a database D of j tables D = {T1,T5,...T;} dis-
tributed over j sites {Site1, Sites, ... Site;}. We want to enable equi-join queries
of any length, of the form EQJoin = Tj, Mpey, Ti, Niey, - -+ Nkey, Li,, Wwhere
T, Ti,,...T;, €D.

The proposed solutions, called schemes, are evaluated based on the network
cost, i.e., total transfer volume for executing the distributed equi-joins. The net-
work cost is the dominant cost factor in distributed query execution, especially
for very large distributed databases like the ones found on the Internet today.
In details, the schemes are required to be: (i) optimizable for the query, so
that the query optimizer is able to configure the parameters of the scheme based
on the query to minimize the overall network transfer volume, (ii) compara-
ble, so that the query optimizer is able to select the optimal scheme, and (iii)
composable, for composing several schemes to answer a query.

n?

In this work we assume that the query initiator knows the locations and
structures of the tables; resource discovery and schema matching are out of the
focus of this work. The local execution of queries at each of the sites is well-
handled by existing centralized DBMS, so we do not elaborate on this here.

Database Statistics. It is typical that the query optimizer estimates the network
cost of each scheme by using database statistics for the participating sites. The
required statistics are: (a) the number of records at each site, (b) the join selec-
tivity of the equi-join, and, (c) the record length of each table. These statistics
are among the standard statistics maintained by the DBMS, centralized and dis-
tributed. We thus assume that they are readily available to the query optimizer.

Schemes and Notations. We use schemes to represent the possible algo-
rithms/layouts of communication in a distributed database system. The schemes
are classified based on the presence or absence of a cache. We use the following
notations throughout the paper:

len(col) Length of column col in bits rowlen(T;) Remaining row length at table
T, in bits

m Length of the Bloom filter k Number of hash functions in
the Bloom filter

o Join selectivity r Number of records at each site

In the next section we describe two schemes without caching. The schemes
that facilitate caching are described in section 5. For each scheme we present
the cost analysis, which is used by the query optimizer for deciding on the query
plan. For all the schemes we present the analysis for two participating sites, i.e.,
N = 2. Extending the analysis for any number of sites is straightforward. The
extended equations are cumbersome, and they are not presented here.

4 Schemes Without Caching

We now present two schemes of query execution in distributed databases that do
not employ a cache. The difference in the two schemes is the location of the final
merging of the results for eliminating all false positives which are introduced by
the Bloom filters.

Consider a scenario where the distributed database consists of N sites
relevant to the query. Let them be denoted as S := Site, Sites,...Sitey
with tables Ti,T5,...Tx. The result set at each site is represented as
ResultSety, ResultSets, ... ResultSety.

BF, BF..
[(ste, | st |- m \ site, f sie,
= 5 12 N

. RSyunz RSun

Fig. 1. (a) Scheme 1: Optimized Bloomjoin, (b) Scheme 2: Result merging at User site

4.1 Optimized Bloomjoin - Result merging at participating sites

For the execution of the query @ : 77 X 15 ... x Ty, the optimized Bloomjoin
works as follows.

Step 1. The user submits the query to the system. The query is forwarded to
the IV participating sites. Each of these sites, say, Sitex, prepares a Bloom filter
BF¥ relevant to the query.

Step 2. Site; sends BF) to Sites where BF} o is computed from the bitwise-
AND of BF; and BF;. BF} 5 is then sent to Sites. At Sites, BF] 5 3 is created
from the bitwise-AND of BF; 5 and BF3, and sent to Sites. The same process
is repeated until BF; 2 3. N is computed.

Step 3. At Siten, BF1 2.3, ..~ is used to retrieve ResultSety, the set of records
from T that satisfy BFi23 . .n. ResultSety is sent to Sitexy—_i. A record
join is performed between ResultSety and the records in Tn_;. This gives
ResultSety ny—1. ResultSety n_1 is sent to Siten_o. The same process is re-
peated until ResultSety n_1,..1 is retrieved.

Step 4. ResultSetn n—1,.1 is sent to the user as query result.

Network cost. For the cost analysis, we present the case when there are two
participating sites, i.e., N = 2. Extending the analysis for any number of sites
is straightforward. The extended equations are cumbersome and they are not
presented here.

The total network cost is the sum of the cost of sending BF; from Site;
to Siteg, of sending ResultSets from Sites to Site; and of sending the query
results to the user.

Network Cost = Length of BF| + Size of ResultSets * (len(key) + rowlen(T2)) +
Size of ResultSet: s = (len(key) + rowlen(T1) + rowlen(T2)) (1)

where len(key) denotes the length of the primary key and rowlen(Tk) is the
remaining length in bits of a record in Tk . Wlog., the number of records at both
sites is 7. With m we denote the length of the Bloom filter in bits. ResultSets
contains the true results of the join and the false positives supported by BF.
Thus, minimizing the false positives is important. The probability of finding a
false positive in a Bloom filter of length m is minimum when the number of hash
functions is k = m/r * In(2). Then, the size of ResultSets is:

Size of ResultSets = True Results + False Positives

= (Number of records x Join Selectivity) + (Record Set in T> — True Results)

* (False Positive Probability)
mxln(2)/r

(rxa)+ (r—r*a)x(0.5)

At Siteq, a record join is performed between ResultSets and the records in T7.
This step eliminates all false positives. Accordingly, the size of the ResultSet; o
is estimated by:

Size of ResultSeti 2 = Number of records x Join Selectivity = r x «
Then, equation(1) is rewritten as:
Network Cost = m+ ((r = a) + (r —r % a) * (0.5)™"" @/« (len(key) + rowlen(Ts))
+(r x a) * (len(key) + rowlen(T1) + rowlen(T3)) (2)

The equation for network cost is minimized when the length of the Bloom filter
gets its optimal value. We find this value by differentiating equation (2) with
respect to m:

d
— (N =
- (NetworkCost)

1+ (r# (1= a) % (0.5)™"" /" 4 1n(0.5) *

ln£2)) * (len(key) + rowlen(Tz)) (3)

To obtain m such that network cost is minimal, the left-hand side of equation(3)
is set to 0. By solving the resulting equation we get the optimal value of m as,

m= W * (In(1 — a) + 2 xIn(In(2)) + In(len(key) + rowlen(Tz))) (4)
n
Extending the equation for more than 2 sites is straightforward. This equation
is used by the query optimizer to estimate the expected cost of this scheme, and
pick the best scheme for answering the query.

4.2 Result merging at User site

Given the query @ : Ty x T5... X Ty, the second scheme in which result
merging is performed at the user site works as follows.

Step 1. The user submits the query to the system. The query is forwarded to
the IV participating sites. Each of these sites, say, Sitey, prepares a Bloom filter
BF¥ relevant to the query.

Step 2. Site, sends BF} to Sites where BF} 5 is computed from the bitwise-AND
of BFy and BF,. BF) » is then sent to Sites. At Sites, BF} 2 3 is computed from
the bitwise-AND of BF} o and BF3. The process is repeated until BFy 23, N is
computed.

Step 3. At Siten, BF1 2.3, .~ is used to retrieve ResultSety, the set of records
from Ty that satisfy BF 23, n. ResultSety is sent to the user site. BF} 23 N
is sent to Sitey_1 and is used to retrieve ResultSety_1, the set of records from
Tn—1 that satisfy BF} 23, n. ResultSety_; is sent to the user site. The same
process is repeated at all N sites.

Step 4. At the user site, a record join is executed: ResultSety n_1,.1 =
ResultSety X ResultSetn_1... X ResultSet;, and presented to the user.

Network Cost. For the analysis we consider a distributed database setup with

two participating sites, i.e., N = 2. The network cost for this scheme is as

follows.

Network Cost = Length of BFy + Size of ResultSets * (len(key) + rowlen(T5))
+Length of BF12 + Size of ResultSet1 x (len(key) + rowlen(11))

We denote the length of BF; as m; bits and the length of BF} 5 as my bits.

Network Cost = my + ((r*) + (r —r % a) % (0.5)™*" /™) & (len(key) + rowlen(Ty))
+ma+ ((rxa)+ (r—r*a)x* (O.5)m2*l”(2)/r2) * (len(key) + rowlen(T1)) (5)
where 79 represents the size of ResultSety. We use differentiation to minimize

Equation(5) with respect to m; and ms. The values of m; and ms at which
network cost is minimal.

r

my = @) * (In(1 — @) + 2 xIn(In(2)) + In(len(key) + rowlen(T»))) (6)
mo = (lnz;))Q * (ln(l —a) +2xIn(In(2)) + In(len(key) + rowlen(T1)) + ln(%)) (7)

5 Schemes With Caching

Network caches are often used in distributed databases for reducing network
usage. In our work we use the network cache to cache, at a single site, frequently-
requested Bloom filters of tables instead of requesting them every time a join is
needed. The cache is initially empty, and the coordinator decides which Bloom
filters need to be cached and which should be refetched each time (see Section 6).

Fetching the Bloom filters and updating the cache. Fetching a Bloom filter un-
compressed requires m bits, where m is the length of the filter. The cost is
reduced by compressing the Bloom filter [5]. The expected network cost for re-
trieving a Bloom filter BF with compression is: Compress(BF') = m x H(BF),
where H(BF) denotes the information entropy of the Bloom filter: H(BF) :=
—Truebits/m xlogy(Truebits/m) — (1—Truebits/m) * loga(1 —Truebits/m),
and Truebits is the number of bits set to true in BF'.

Every time a cached Bloom filter is invalidated, the cache holder requests the
new Bloom filter from the site which holds the table. Let the cached Bloom filter
be denoted by BF_.,cheq and the new one by BF.,. The table holder decides
what is less expensive: (a) to send the Bloom filter representing the difference
between the cached and the new Bloom filters: BFy;rf(BFnew; BFeached) =
XOR(BFyew, BFcuched), or, (b) to send the new Bloom filter BF},c,,. In both
the cases the Bloom filter is compressed before transmission. Thus, the site that
holds the table selects and sends the Bloom filter with lower entropy.

The cache can reside either at one of the participating sites or at the coor-
dinator. Although caching at a participating site is always less expensive than
caching at the coordinator site, the former is not always possible; the existence
and location of the cache depends on the database policies and is set by the
database administrator manually. The optimizer then selects the optimal scheme
based on the caching policies. We now describe and analyze both the caching
approaches.

5.1 Caching at a participating site

For this scheme a site participating in the join, say, Sitec € S, maintains a
cache of Bloom filters. For the execution of the query @ : 77 X T ... x Ty, the
scheme works as follows.

Step 1. The cached Bloom filters BFqched, s BFcachedss - - - BFcachedy are up-
dated by sending Compress(BFyew) or Compress(BF g f(BFpew, BFcached))
whichever yields a lower network cost. The updated and cached Bloom filters
are now denoted as BFy, BFs,... BFy.

Step 2. At the cache site Sitec, a bitwise-AND operation is performed on the
updated Bloom filters BF|, BF5,... BF¢,... BFy resulting in the final Bloom
ﬁlter, BF1,2,3...N-

Step 3. BF1 23, N is compressed and sent to all the participating sites.

Step 4. At each participating site, Sitex, where K = 1,2,..N, BF1 23 N is
used to retrieve ResultSety, the set of records that satisfy BF) 2 3. n at Sitex.
ResultSety is sent to the cache site, Sitec.

Step 5. At the cache site, a record join is performed: ResultSet;os. N =
ResultSet, x ResultSets ... X ResultSety.

Step 6. ResultSet; 2 3. N is sent to the user as query result.

Network Cost. We now present the cost analysis of this scheme for the case with
two sites, Site; and Sites, having tables 77 and 75 respectively. In our example,
Sites is also the cache holder. The network cost for the scheme is:

Network Cost = Cost of caching or updating BFy + Length of compressed BFi
+ Size of ResultSet; * (len(key) + rowlen(T1))
+ Size of ResultSety s (len(key) + rowlen(T) + rowlen(T>))

where len(key) is the length in bits of the primary key and rowlen(Tk) is
the remaining length in bits of a record in Tk . Since Bloom filters are always
compressed before being sent, the cost of sending a Bloom filter BF' compressed
over the network is Compress(BF) = m x H(BF). The expected value of the
network cost is:

E(Network Cost) =
Min(Compress(BFyew,), Compress(BFyifs(BFpew, , BFcached,)) + Compress(BF} 2)

+ ((r xa)+ (r—r*xa)x* (O.S)m*l”@)”) x (len(key) 4+ rowlen(T1)
+ (r * a) * (len(key) + rowlen(T1) + rowlen(T%)) (8)

For the first execution of a query, the entire Bloom filter is sent from the site
to the cache. Likewise, when the Bloom filters are already in the cache and are
updated using BF},.., the entire new Bloom filter is sent from site to cache. The
expected network cost corresponding to both these scenarios is expressed using
equation(9).

Network Cost = Compress(BFpew,) + Compress(BFi 2)
T ((r sa)+ (r — rxa)x (0.5)M*l"<2>/r) x (len(key) + rowlen(T1))
+ (r+a)x (len(key) + rowlen(Th) + rowlen(Tv)) 9)

We use differentiation to minimize equation(9) with respect to m. The Bloom
filter length that minimizes the network cost is found by equation(10).

m = % * (In(1 —) + 2xIn(In(2)) — In(H(BFnew,) + H(BF1,2)))

(in(2))

T

(In(2))

Estimating the bloom filter entropy requires the number of true bits in each
bloom filter. The coordinator uses the selectivity of the join to estimate the
number of true bits in the Bloom filter BF} 2, and the required entropy values,
as presented in [6].

T * (In(len(key) + rowlen(T1))) (10)

5.2 Caching at coordinator site

In this scheme the coordinator site, Sitec, holds the cache of Bloom filters.
Given a setup of N sites S. The coordinator site Sitec does not belong in S.
The query Q : T7 x T ... x Ty is executed as follows:

Step 1. The cached Bloom filters BF i qched, s BFcachedss - - - BFcachedy are up-
dated by sending Compress(BFyew) or Compress(BFg;ff(BFpew, BFcached))
whichever yields a lower network cost. The updated and cached Bloom filters
are now denoted as BF, BFs,... BFy.

Step 2. At the coordinator site, in the cache, a bitwise-AND operation is per-
formed on BFy, BF;,... BFy resulting in the final Bloom filter, BF; 2 3. n.

Step 8. BF 23.. v is compressed and sent to all the participating sites.

Step 4. At each participating site, Sitex, where K = 0,1,2,..N, BFy 23, N is
used to retrieve ResultSety, the set of records that satisfy BF} 23 n at Sitek.
ResultSety is sent to the coordinator.

Step 5. At the coordinator, a record join is performed: ResultSet; o3 n =
ResultSet; 1 ResultSetsy ... X ResultSety.

Step 6. ResultSet; 2 3. N is sent to the user as query result.

Network Cost. To analyse the network cost for the scheme, we assume two
participating sites, Site; and Sites. The cache is present at an independent
coordinator site. The network cost for the scheme with 2 sites is:

Network Cost = Cost of caching or updating BFy 4+ Cost of caching or updating BF>
+ 2% Length of compressed BF1 2+ Size of ResultSet, x (len(key) + rowlen(T1))
+ Size of ResultSets * (len(key) + rowlen(Tz))
+ Size of ResultSeti 2 * (len(key) + rowlen(T1) + rowlen(1%))

The expected value of the network cost is:

E(Network Cost) = Min(Compress(BFphew,), Compress(BFy;sf(BFrhew, s BFeached;))
+ Min(Compress(BFrnew,), Compress(BFyif¢(BFnews, BFcacheds))
+2 x Compress(BFi)

+ ((r xa)+ (r — rxa)= (0.5)m*l”(2)/’"> x (len(key) + rowlen(Ty))
+ ((r xa)+ (r — r*xa)=* (0.5)m*l”(2)“> * (len(key) + rowlen(T5))
+ (r+a)* (len(key) + rowlen(T1) + rowlen(Tz)) (11)

When tables are requested for the first time, entire Bloom filters need to be sent
from the sites to the cache. Also, when the cached Bloom filters are updated using
the new Bloom filters, BFy ey, and BF,.., need to be sent from the sites to the
cache. The network cost for both the above scenarios is,

E(Network Cost) = Compress(BFpew,) + Compress(BFnew,) + 2% Compress(BFi,2)
+ ((r xa)+ (r — rxo)x* (0.5)7"”"(2)/7") x (len(key) + rowlen(T1))

+ ((r xa)+ (r — rxa)=* (0.5)m*l"(2)/’") x (len(key) + rowlen(T%))
+ (r*xa) * (len(key) + rowlen(T1) + rowlen(T5)) (12)

Differentiating, we find the correspoding optimal Bloom filter length which
minimizes the network cost:

m = (@) * (In(l — @) +2*In(In(2)) — In(H(BFpew,) + H(BFpew,) + 2 H(BF1,2)))

r

T e

In(2 * len(key) + rowlen(T1) + rowlen(Tz))) (13)

6 Scheme Comparison - A Query Optimizer for
Distributed Databases

It is standard in distributed databases to assign the responsibility of query plan-
ning to a node, or a small number of participating nodes, the coordinators. The
coordinators in our proposal are responsible for: (a) receiving and parsing the
queries, (b) rewriting, (c) optimizing, and (d) sending the queries to the partic-
ipating sites and coordinating the query execution.

The first two steps in our schemes do not differentiate from existing dis-
tributed query algorithms. The crucial step is optimizing the queries to reduce
the network cost. The query optimizer breaks the query to a series of equi-joins
which can be efficiently handled, and other joins, e.g., inequality joins. Then,
for each equi-join it decides whether a caching scheme is more beneficial than a
scheme without caching. This is decided based on the popularity of the requests
for each Bloom filter, on the maximum caching size, and, in case the Bloom
filter is already cached, on the change rate of the Bloom filter between requests
(percentage of changed bits between each Bloom filter request).

After the optimizer decides whether each Bloom filter should be cached or
not, it enumerates all the possible plans, and computes the expected cost for
each of them according to the cost equations for the optimal length (equations 2,
5,9, 11). Finally, it selects the best order for executing the query, forwards the
query plan to the participating nodes, and coordinates the query execution.

7 Experimental Evaluation

The purpose of the experimental evaluation was twofold: (a) to experimentally
verify the theoretical costs for the proposed schemes, and, (b) to test the impor-
tance of the optimizer in different setups. The experiments verified the theoretical
cost estimations. Next paragraphs present the details on the experiments on the
importance of the optimizer.

The experiments were performed on a vertically fragmented
database. We created 2 tables of the following structure:
Table Personnel: int personid, char[16] name, at Siteq, and
Table Professors: int personid, char[16] department, at Sites. Both
the tables had a primary key length of 32 bits and remaining row length of 128
bits, and Professors.personid was a foreign key of Personnel.personid. We
then filled the two tables with 1000 records each, at each experiment varying
the join selectivity from 0 to 1.

In the first experiment we compared the optimized Bloomjoin with the orig-
inal Bloomjoin algorithm [4]. The original Bloomjoin was executed with Bloom
filter lengths of 1000 bits, 30000 bits, and 50000 bits. The hash functions in each
case were set to minimize the false positive probability: k = m/r % In(2), where
m was the length of the filter and r the number of records. In all cases the Bloom
filters were compressed before sending. Figure 2(a) plots the network resources
required by each of the approaches for varying join selectivity. The optimized
Bloomjoin scheme is significantly better than all the constant-length Bloom fil-
ter solutions. The 1000 bits Bloom filter has an increased error probability and
gives too many false positives. The effect of false positives is more visible when
the selectivity is low. When the selectivity is high, the number of false positives
is reduced independent of the Bloom filter length, since most of the sent records
already belong to the results. The larger Bloom filters are also suboptimal since
they add an unnecessary cost to the query execution.

500000 - 700000
"Optimized BloomJoin" . . "Optimized BloomJoin"
450000 | "Unoptimized BloomJoin - m=1000 bits" . B . "Result merging at user site”
"Unoptimized BloomJoin - m=30000 bits" B 600000 | "Cache at participating site and no update”
"Unoptimized BloomJoin - m=50000 bits" - - - o ‘Cache at coordinator site and no update” x

B b "Cache at participating site and 30% update” - - -
*Cache at coordinator site and 30% update" =

400000

350000 500000

800000 400000

250000

Network Cost (bits)
Network Cost (bits)

200000 300000

150000 200000 -

100000
100000 ~

50000

° o
0 0.1 0.2 03 04 0.5 06 0.7 08 0.9 1 0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Join selectivity Join selectivity

Fig. 2. (a) Optimized Vs Original Bloomjoin, (b) Comparison of all the schemes

In the second experiment we compared all the proposed schemes. Since
caching depends on the update rate of the records in the tables, the schemes
with caching were repeated twice, once without updating the records, and an-
other time with an update rate of 30%. The updating was simulated in the
following manner: (a) the cache holder cached all the Bloom filters, (b) the table
holders were replacing 30% of their records with an equal number of new records
and regenerating their Bloom filters, and (c) the cache holder was updating the
Bloom filters in the cache and executing the query. Figure 2(b) plots the network
cost for varying join selectivity. For low selectivity and no updates, caching at
a participating site, caching at the coordinator, and the optimized Bloomjoin
schemes are almost equally efficient. For high selectivity, the result set which
needs to be transmitted twice makes the schemes with caching at coordinator
less beneficial. Among the scenarios with updates, the optimized Bloomjoin is
optimal for oo < 0.5. For larger join selectivities, the scheme with result merging
at user site is significantly better than the others.

8 Conclusions and Future Work

Efficient algorithms for distributed joins are required for a wide range of
Internet-based applications, like peer-to-peer systems and web-based distributed
databases. In this work we proposed and theoretically analyzed four distributed
join schemes which make use of Bloom filters to reduce network costs signifi-
cantly. An integral part of our contribution is the query optimizer, which picks
the optimal scheme for each query and configures it for minimizing the network
usage. The optimization process involves only statistics that are maintained by
default in all DBMS systems.

In addtion to the theoretical analysis, we experimentally evaluated the pro-
posed schemes and compared them with previous work. The experimental results
validate our analystical findings and show the importance of selecting the right
scheme and configuring it with the right parameters. Significant reduction of the
cost, more than 50%, was observed in some setups just by optimizing Bloom
filter length and number of hash functions.

Our current focus is on further enhancing the analysis with network statistics,
so that fast links are preferred over slower links. Sending a Bloom filter from
USA to Hannover, Germany is more expensive than communicating the same
filter from Munich to Hannover. Our current analysis does not yet take this
into account. By including the network distance (in terms of bandwidth and/or
latency) in the analysis, we will be able to reorder the joins so that usage of
expensive links is minimized.

References

1. Philip A. Bernstein, Nathan Goodman, Eugene Wong, Christopher L. Reeve, and Jr.
James B. Rothnie. Query processing in a system for distributed databases (sdd-1).
ACM Trans. Database Syst., 6(4):602-625, 1981.

2. Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
mun. ACM, 13(7):422-426, 1970.

3. Donald Kossmann. The state of the art in distributed query processing. ACM
Comput. Surv., 32(4):422-469, 2000.

4. Lothar F. Mackert and Guy M. Lohman. R* optimizer validation and performance
evaluation for local queries. In Carlo Zaniolo, editor, Proceedings of the 1986 ACM
SIGMOD International Conference on Management of Data, Washington, D.C.,
May 28-30, 1986, pages 84-95. ACM Press, 1986.

5. Michael Mitzenmacher. Compressed bloom filters. IEEE/ACM Trans. Netw.,
10(5):604-612, 2002.

6. Odysseas Papapetrou, Loizos Michael, Wolfgang Nejdl, and Wolf Siberski. Ad-
ditional analysis on bloom filters. Technical report, Division of Engineering and
Applied Sciences, Harvard University, L3S Research Center, Leibniz Universitit
Hannover, 2007.

7. Patrick Valduriez and Georges Gardarin. Join and semijoin algorithms for a multi-
processor database machine. ACM Trans. Database Syst., 9(1):133-161, 1984.

8. Clement T. Yu and C. C. Chang. Distributed query processing. ACM Comput.
Surv., 16(4):399-433, 1984.

