
PCIR: Combining DHTs and Peer Clusters for Efficient Full-text P2P Indexing

Odysseas Papapetrou, Wolf Siberski, Wolfgang Nejdl

L3S Research Center, Leibniz Universität Hannover, Germany

Abstract

Distributed hash tables (DHTs) are very efficient for querying based on key lookups. However, building huge term indexes, as
required for IR-style keyword search, poses a scalability challenge for plain DHTs. Due to the large sizes of document term
vocabularies, peers joining the network cause huge amounts of key inserts and, consequently, a large number of index maintenance
messages. Thus, the key to exploiting DHTs for distributed information retrieval is to reduce index maintenance costs. Various
approaches in this direction have been pursued, including the use of hybrid infrastructures, or changing the granularity of the
inverted index to peer level. We show that indexing costs can be significantly reduced further by letting peers form groups in a
self-organized fashion. Instead of each individual peer submitting index information separately, all peers of a group cooperate to
publish the index updates to the DHT in batches. Our evaluation shows that this approach reduces index maintenance cost by an
order of magnitude, while still keeping a complete and correct term index for query processing.

1. Introduction

Distributed hash tables (DHTs) are the basis for most modern
Peer-to-peer (P2P) Information Retrieval (IR) systems. They
are preferred over super peer or other hierarchical network
structures for their robustness, efficiency, and scalability. They
also outperform unstructured networks in query execution effi-
ciency and in information retrieval quality.

As such, DHTs provide the necessary overlay when it comes
to building P2P applications with IR features. For example,
SCOPE [1, 2] is a P2P social networking system which uses
DHT for scalability. SPROUT enhances the search functional-
ity in P2P networks by maintaining a social network on top of a
standard DHT. UniWiki [3] employs a DHT overlay to build a
distributed, fault-tolerant and scalable Wiki system. ALVIS [4]
builds an inverted index over a P2P network, which enables
scalable cooperative search, and Minerva [5, 6] facilitates a
DHT overlay to allow web search.

These DHT-based systems maintain a distributed inverted
index which maps each term/key to the list of relevant peers
or documents. Each peer joining the network also joins the
DHT infrastructure, and publishes its contents at the distributed
inverted index. For query processing, the query terms are
looked up in this index and all relevant documents or peers are
found. This approach (in the following called flat DHT index-
ing) works well when the number of terms per peer is limited,
even for extremely large networks.

However, a common issue of systems using flat DHT index-
ing is that maintaining the DHT inverted index becomes pro-
hibitively expensive when the number of distinct terms per peer,
is high [7]. When each peer features a large amount of dis-
tinct terms to index, it needs to execute a large amount of DHT

Email addresses: papapetrou@l3s.de (Odysseas Papapetrou),
siberski@l3s.de (Wolf Siberski), nejdl@l3s.de (Wolfgang Nejdl)

lookups for indexing its collection. And since the DHT decides
which peer is responsible for which term via hashing, a con-
siderable number of peers holding some part of the DHT have
to be contacted to fully publish all terms of a peer. High peer
churn and frequent document updates in the peers aggravate the
problem.

Several approaches have been proposed to limit index main-
tenance cost, e.g., combining DHTs with unstructured net-
works [8], or indexing only selected terms [9]. While these ap-
proaches efficiently reduce index maintenance costs, they sac-
rifice completeness of the inverted index, increase the cost of
query execution, or decrease the quality and completeness of
the query results (see Section 7 for a comprehensive overview).

In this work, we present a novel approach which reduces in-
dexing costs significantly without affecting querying cost or re-
sult quality. The approach is based on a hybrid super peer/DHT
topology: we organize peers into groups, each of them repre-
sented by a super peer for publishing the group’s information
to a single global DHT used for query processing. Each peer
independently joins a group, and submits its index to the rep-
resentative super peer for the group. The group representative
efficiently batches this information and periodically publishes it
to the DHT, yet without removing any details or compromising
the completeness of the inverted index. Because of this mes-
sage batching, the number of the required DHT lookups for
publishing and the total number of messages is reduced. Our
evaluation shows that the proposed approach enables cost sav-
ings of up to one order of magnitude compared to a plain DHT,
regarding number of messages as well as total transfer volume.
At the same time, network workload of the super peers remains
below the network workload of the regular peers in the flat DHT
approach.

In its basic form, our algorithm relies on arbitrary assign-
ment of peers to groups, without taking the peer contents into

Preprint submitted to Elsevier February 5, 2010

account. We achieve further improvements by introducing a
distributed clustering scheme, such that peers form groups/clus-
ters based on content similarity. This reduces the total num-
ber of distinct terms per cluster and additionally decreases the
required DHT lookups for publishing the terms and the total
number of messages for maintaining the DHT. The algorithm
presented here is based on preliminary work published in [10].

Contributions The main contributions of this work are:

• We propose a two-level P2P full-text indexing approach,
which reduces full-text indexing costs significantly. Our
algorithm maintains a complete inverted index, and does
not affect the querying performance and IR efficiency.

• We propose an algorithm for distributed clustering in P2P
systems. The algorithm clusters peers that share many
common terms together. Unlike previous P2P clustering
approaches, our approach exhibits low costs even for high-
dimensional data like text and scales to large networks.

• We combine distributed clustering with the two-layered
full-text indexing infrastructure, for further reducing the
indexing costs. Compared to previous full-text indexing
approaches, our clustering-enhanced approach reduces the
indexing costs by an order of magnitude for large P2P net-
works.

The paper is structured as follows. The next section shows
how inverted indexes are currently constructed over DHTs and
how the resulting index structure is used to evaluate keyword
queries. We present the basic algorithm and the building blocks
of our topology in Section 3. In Section 4 we introduce our dis-
tributed clustering scheme and show how it enhances the basic
algorithm, reducing the network overhead of the inverted index
maintenance process. A cost analysis is presented in Section 5,
and Section 6 contains the results of our experimental evalua-
tion. We review related work in Section 7. We conclude with
discussion and future work.

2. Background

This work is focused on efficient creation and maintenance
of an inverted term index in a DHT. In this section we describe
the underlying techniques and the standard approach for DHT-
based information retrieval in P2P networks.

2.1. DHT-based Inverted Indices
Distributed Hash Table networks (DHTs) provide efficient

hash table capabilities in a P2P environment by arranging peers
in the network according to a specific graph structure, usually a
hypercube. DHTs offer the same functionality as their central-
ized hash table counterparts, a put(key, value) method, which
associates value with key, and a get(key) method, which re-
turns the value associated with key. Both methods have a cost
of O(log(n)) messages, where n is the number of participat-
ing peers. In the following, we use Chord [11] as underlying
system, but our approach does not rely on a specific DHT ap-
proach.

DHT I...Local Index

Term PF
Tennis 5
Sports 3
Volley 2
... ...

Local Index DHT Index

P1

P27

P19

P11

P7

P3

P2

DHT Layer

Politics
Nejdl

P4

P12

Football

Volley
Elections

Gottlob

Aberer

Chicken

Elections

Volley
...

Term
P1
P3
P9

P4

...

Peer
12
9
1

2
...

PF
17
21
19

5
...

Max.PF

Figure 1: Flat DHT topology and index structure

Each peer participates as a node in the DHT, by taking re-
sponsibility for part of the key range. Peers also index their col-
lections in the DHT inverted index. For the latter, each peer first
builds a local inverted index for its documents, after processing
them with stopword filtering and stemming as usual (see Peer
P4 in Figure 1 as example). Then, it creates an index entry for
each discovered term and adds it to the DHT by sending it to
the peer responsible for this term. Terms are mapped to peers
in the DHT by using a hash function. The distributed inverted
index can be built on any DHT implementation, since it only
requires the generic insert/lookup functionality, offered by all
DHT overlays.

All common scoring functions in information retrieval take
into account the term frequency tf(t, d), the number of occur-
rences of term t in document d. Some P2P information re-
trieval systems build and maintain such a document-granularity
inverted index, e.g., [4]. However, indexing each document in-
dividually is expensive in terms of network cost. Therefore,
most P2P IR approaches use peer granularity [5], i.e., instead of
publishing document term frequencies, each peer publishes its
peer term frequency pf(t, pi) =

∑
d∈DC(pi) tf(t, d), where DC(p)

is the set of documents held by peer pi. Peer-granularity in-
dexes are more compact and can be efficiently exchanged in a
distributed system. Thus, they provide a good balance between
precision and resource requirements [12]. See Section 7 for a
detailed description of all indexing variants.

For the identification of relevant peers, the peer frequencies
need to be normalized by the size of each peer’s collection.
Therefore, in addition to the peer frequency, the maximum peer
frequency max pf(pi) = maxt∈DC(pi) pf(t, pi) is stored in an in-
dex entry. We discuss how peer frequency and maximum peer
frequency are used for query processing in Section 2.2.

2

In the following we assume that an index entry for term t
and peer pi contains the contact information for pi (usually the
IP address), the peer frequency pf(t, pi), and the maximum peer
frequency max pf(pi) (see Figure 1). The list of all index entries
published for a term is called a posting list. The posting list of
a term t can be retrieved by performing a DHT lookup, using t
as a key.

We refer to the described approach as Flat DHT Indexing, as
it does not use an intermediate layer between the peers and the
DHT to optimize index maintenance. Flat DHT Indexing is the
standard approach for index maintenance employed by recent
P2P systems, and we use it as the baseline for evaluating the
performance of our approach.

In a P2P network, peers might become disconnected unex-
pectedly. The usual approach to cope with this churn is to at-
tach an expiration time to each index entry. Peers periodically
republish their content such that their index entries get refreshed
before they expire. Under the periodic republishing model, it is
acceptable for the distributed index to have stale data of maxi-
mum age period, if the DHT republishing occurs with an inter-
val period′, with period ≤ period′. The periodic republishing
model is favorable for realistic high-churn P2P setups, and the
interval length period′ can be configured to balance the index
accuracy with the overall publishing cost.

While DHT-based Inverted Indices form an excellent founda-
tion for distributed query processing, their creation and main-
tenance incurs a very high number of network messages. Even
if these messages are usually small, their packaging according
to the network protocol (i.e., TCP/IP frames) causes a high net-
work volume overhead. For the TCP/IPv4 protocol, this over-
head is 75% of the total message size, considering the theoretic
minimum TCP/IP frame size of 32 bytes (64 bytes for a trans-
action) and assuming an average of 10 bytes for each term. The
large number of these messages also causes a high workload to
the intermediate network routers. Furthermore, the average cost
at the individual peers which are asked to submit or route these
messages can render the weaker peers unable to participate, and
cause increased latencies even at the high-end peers.

2.2. DHT-based Query Processing
The work described here focuses on efficiently maintaining

the required information in the distributed inverted index, and
it is applicable to all query execution techniques that require
a DHT-based index. For completeness, we summarize one of
these techniques here, where query processing is performed as
two-step process [5]. In this approach the query initiator first
discovers all the related peers and selects the most relevant of
them (collection selection). It then queries the selected peers,
collects and merges the results, and presents them to the user
(query execution).

The described approach employs a peer-granularity index.
However, PCIR can also efficiently be used to optimize
document-granularity indexing [4] as well as query-driven in-
dexing [13, 14], as we show in Section 6.

Collection selection. There is rich literature on collection se-
lection techniques for distributed collections. The work is di-

rectly applicable to P2P systems, since each peer can be consid-
ered as a distributed collection. In this work we use CORI [12]
to identify relevant peers

Assume a query Q consisting of terms {t1, t2 . . . tl}. The query
initiator looks up each term in the DHT, and retrieves the post-
ing lists for all query terms. These posting lists contain the peer
scores per term for all related peers. The CORI score s(Q, pi)
for query Q and peer pi is computed as:

s(Q, pi) =
1
|Q|
∗

∑
∀t∈Q

db + (1 − db) ∗ Tt,pi ∗ It,pi

with Tt,pi = dt + (1 − dt) ∗
log(pf(t,pi)+0.5)

log(max pf(pi+1.0)) and It,pi =
log(n+0.5

c f (t))
log(n+1.0) .

Parameters dt and db are constants with a default value of 0.4
(for more information on how to set these constants see [12]).
pf(t, pi) is the frequency of term t in peer pi and cf(t) =

|{p|pf(t, p) > 0}| is the collection frequency for t, that is, the
number of peers at which term t occurs. The frequency of the
most frequent term in peer i is denoted as max pf(pi). The pa-
rameter n is the number of peers connected in the network.

Comparing the data stored in the DHT (Figure 1) and the data
required for CORI score function, we see that all the required
data is already stored in the DHT, except for n, the total number
of peers. The value of n can be inexpensively estimated with a
random walk [15], and periodically redetermined to take churn
into account. Thus, for each query term the necessary parame-
ters can be easily retrieved by only one DHT lookup per term.

Query execution. The query initiator finds the α peers with the
highest CORI scores for the query, and routes the query to them.
The respective inverse collection frequency icf(t) = 1

c f (t) for
each query term t is attached to the query, to allow all peers to
properly weight the importance of each term. Each peer then
independently selects its top-k related documents, using tf ∗ icf
score. Links to the results are returned to the query initiator and
they are ordered by relevance with respect to the query.

2.3. Bloom Filters

In this work we use Bloom filters for compactly represent-
ing large term sets (Section 4). Bloom filters were first pro-
posed in [16], as a space-efficient representation of sets S =

{e1, e2, e3 . . . en} of n elements from a universe U. A Bloom fil-
ter consists of an array of m bits and a set of k independent hash
functions F = { f1, f2, . . . , fk}, which hash elements of U to an
integer in the range of [1,m]. The m bits are initially set to 0
in an empty Bloom filter1. An element e is inserted into the
Bloom filter by setting all positions fi(e) of the bit array to 1,
for all fi ∈ F. Bloom filters are used as content summaries in
our algorithm.

A limitation of Bloom filters is that they do not allow re-
moving of elements. For removing an element from a Bloom
filter, the whole Bloom filter needs to be rebuilt from scratch.
A workaround was proposed by Fan et al. [17], called counting

1We use the expressions ‘A bit is set to true/false’ and ‘A bit is set to 1/0’
interchangeably.

3

Bloom filters. A counting Bloom filter replaces the bit array of
standard Bloom filters with an array of m counters. For adding
an element in a counting Bloom filter, the element is hashed us-
ing the hash functions, and all respective counters are increased
by one. For removing an element, respective counters are de-
creased by one. In this work, counting Bloom filters are used to
compute the difference between two Bloom filter summaries.

3. PCIR Basic Algorithm

As explained in the previous section, the main issue with
DHT-based inverted indexes is their high maintenance cost.
PCIR reduces this cost without changing the content of the re-
sulting index, so that existing query execution techniques can
be applied, like the one described in Section 2. Since PCIR
creates exactly the same inverted index as flat DHT indexing,
query processing does not need to be adapted, and the same
retrieval quality as before is achieved.

Our approach builds on the observation that peers usually
have a large term overlap. In the flat DHT model, this term over-
lap is not exploited; each peer independently publishes its terms
in the DHT, and therefore it requires its own DHT lookups for
all its terms. PCIR, short for Peer Clusters for Information Re-
trieval, exploits this term overlap between peers by forming
small groups of peers, and assigning responsibility for DHT
lookups in each group to a selected super peer of the group.

Figure 2 illustrates the PCIR overlay. First, a new peer joins
the DHT, but without publishing its terms in the DHT inverted
index. Second, it either discovers and joins an existing group of
peers, or creates a new group and assumes the role of the super
peer. Third, it builds the local inverted index for its collection
and sends it to the super peer of its group. In turn, the super
peer of each group collects these inverted indices of the group’s
peers and publishes them to the DHT. Super peers reduce the
number of DHT lookups by performing only one lookup per
term in the group, regardless of the number of collected entries
for the term. The above steps are repeated periodically to com-
pensate churn.

It is important to note that the super peers do not post an
aggregated inverted index for the group, they post the original
index entries – the posting lists – as received from their group
peers. Therefore, unlike other super peer IR networks, queries
do not go through the super peers, and query processing does
not impose additional workload on the super peers. Super peers
in PCIR only contribute to the indexing process but do not need
to act as a point of entry for queries.

Distributed Inverted Index. For the purpose of query execu-
tion we construct a global inverted index over a DHT. For
demonstration purposes we now use peer granularity inverted
indices, as described in Section 2, although as we show in Sec-
tion 6, PCIR is also beneficial to other publishing strategies,
e.g., document-granularity indexing. The distributed index cre-
ated from PCIR looks nearly identical as the one constructed by
flat DHT Indexing (cf. Section 2). The only difference is that
in addition to the peer information, the super peer that inserts

P1

P27

P19

P11

P7

P3

P2

DHT Layer

Politics
Nejdl

P4

P12

Football

Volley
Elections

Group Layer

P1

P1 P3 P27 P2

P19

P13 P7

P3

P12

Politics
Politics

Elections

Elections Politics

Volley
Football

Volley
ChickenFootball

Volley

Gottlob

Aberer

Nejdl
Gottlob

Aberer
Nejdl

Nejdl GottlobFootball

Chicken

Chicken

Message types

Peer sends inverted
index to its super peer

Super peer publishes
in the DHT

Aberer

Figure 2: The two-layer architecture combines grouping of peers around super
peers and an inverted index over a DHT (super peers are gray shaded)

Keyword Peer pf max pf Super peer
Football p1 12 17 p4

p3 9 21 p4
p9 1 19 p9

Volley p1 7 17 p4
.

Figure 3: Logical DHT Inverted Index. For each term, the DHT keeps a list
of relevant peers, their contact details and the respective peer scores and super
peers.

the entry in the term’s posting list, also adds its own contact in-
formation. As we explain later, this information is required for
efficiently building the peer groups. Figure 3 shows a sample
index.

Construction of the inverted index relies only on the generic
DHT insert/lookup functionality. Therefore we abstract from
the implementation details of DHT. Although in this work we
use Chord [11] as DHT infrastructure, any DHT implementa-
tion can be used. In the following, we explain in detail how this
inverted index is built and maintained.

3.1. Peer Life-cycle
Having described the structure of the DHT inverted index

built by our algorithm, we now take a closer look at the life-
cycle of the peers in the network.

Peer joining the network. This activity includes two tasks: (a)
joining the DHT, and (b) joining a peer group. We omit the for-
mer from the discussion since it is specific to the DHT protocol
and orthogonal to our work.

Alg. 1 presents the process for joining a group. The joining
peer first decides whether it should create its own peer group
and become a super peer, or join an existing group as a normal
peer. In the former case, it publishes its contents to the DHT
directly, and awaits other peers to join its peer group. In the
latter case, the peer needs to find a super peer that still accepts

4

connections. It does so by running a DHT lookup on a random
value (in the case of Chord, which typically has an id ring from
0 to 2160, the peer chooses a random value in this range). The
DHT lookup returns a peer responsible for holding the respec-
tive hash value, which is in turn queried for all the super peers it
is aware of (i.e., the super peers that have published information
in the posting lists this peer holds). The retrieved super peers
are then checked in random order. The new peer joins the peer
group of the first discovered super peer that can accept it, i.e., it
is not overloaded.

The decision for becoming a super peer or a normal peer can
be taken by each peer independently. For instance, the desired
ratio sp ratio of peers and super peers can be used to determine
the probability of each individual peer to become a super peer.
Another strategy for a peer would be to become super peer after
a given number of unsuccessful attempts to join an existing peer
group. Unlike previous super peer systems (e.g., [18]), PCIR
does not require super peers to be especially powerful. A super
peer in PCIR typically has less network workload than a regular
peer in flat DHT indexing.

PCIR super peers can also independently control their work-
load and stop accepting new peers before they become over-
loaded. Each super peer sets its own upper bound for its
workload, based on its available network and computational re-
sources. Since workload of super peers depends on the num-
ber of distinct terms in the group, in our implementation super
peers express their upper bound in maximum number of dis-
tinct terms in their group. Other possible ways of expressing
the upper bound are maximum number of peers in the group,
maximum group collection size, or a combination of the above.
Note that this limit will never cause index entries to get lost. As
soon as a super peer reaches its self-imposed limit, it just stops
accepting new peers.

Super peers do not have a special role during query process-
ing; they are only used to make the DHT publishing more effi-
cient. Therefore, their attributes, performance and workload, do
not affect querying performance or quality of query results. A
long uptime of super peers is also not required, since the DHT
update protocol is based on periodic republishing; when a su-
per peer disconnects, the peers in its group simply repeat the
process and join other groups.

Peer/Super peer periodic publishing. After a peer joins a group
it periodically sends its inverted index to the super peer of that
group. The super peer of each group packs together the peer
frequencies per term (the posting lists for its group), and pub-
lishes them in the DHT (Alg. 2). The publishing process is
periodically repeated to compensate churn.

This two-layered publishing process has several advantages
compared to flat DHT indexing. The peers can efficiently pub-
lish their inverted index at their super peers; publishing requires
only one message which is easily compressible, and does not
generate any DHT lookups. The super peers can also optimize
the updating of the DHT index. All the group’s peer scores for
each term are packed in a single message, thereby (a) requiring
only a single DHT lookup and only one publishing message per
distinct group term, and, (b) enabling compression and delta

Algorithm 1 Peer joining a peer group (basic PCIR)
1: joinPCIR() {
2: if decideIfSuperPeer() then
3: // become a super peer
4: this.isSuperPeer:=true;
5: groupInvertedIndex:=myInvertedIndex;
6: else
7: // become a normal peer
8: this.isSuperPeer:=false;
9: // find random super peer

10: mySuperPeer:=findRandomSuperPeer();
11: // and submit your inverted index
12: mySuperPeer.groupInvertedIndex.update(myInvertedIndex);
13: end if
14: }

15: SuperPeer findRandomSuperPeer() {
16: repeat
17: int randomKey:=getRandom();
18: peer p:=DHTLookup(randomKey);
19: <SuperPeer> listOfSPs:=p.allKnownSuperPeers();
20: while (listOfSPs.isNotEmpty() & mySuperPeer is null) do
21: SuperPeer randomSP:=listOfSPs.selectRandom();
22: if randomSP.canAcceptMe() then
23: mySuperPeer:=randomSP;
24: end if
25: end while
26: until SuperPeer found
27: return mySuperPeer;
28: }

29: boolean decideIfSuperPeer() {
30: RandomNumber random:=getRandom(0,1);
31: return (random≤ Psp ratio);
32: }

updating. A disadvantage of the two-layered approach is that
the data now needs to be published twice, the first time from
each peer to its super peer, and the second time from the su-
per peer to the DHT inverted index. However, the benefits of
the two-layered architecture, and mainly the drastic reduction
of the DHT lookups, surpass the extra publishing overhead.

Handling Churn. PCIR relies on periodic publishing of the
peer scores, both from peers to super peers, and from super
peers to the DHT. Particularly, when a peer sends its inverted
index to its super peer, it attaches an expiration period. The
super peer uses this expiration period to keep the group’s in-
verted index updated, i.e., to remove the expired entries from
the group’s posting lists. Therefore peers do not need to unpub-
lish old information; these are automatically filtered out by the
super peers. Similarly, super peers attach an expiration period
to each of their DHT publishings. The peers participating in the
DHT index detect and remove the expired posts, so super peers
also do not need to unpublish anything. A global system time
is not required. All peers only need to share the same expira-
tion period and no further synchronization between the peers is
required.

5

Algorithm 2 Periodic Peer/Super Peer publishing
1: while true do
2: if this.isSuperPeer then
3: // update with my own collection
4: this.groupInvertedIndex.update(myInvertedIndex);
5: // publish group’s inverted index
6: for all term t in groupInvertedIndex do
7: // publish peerlist in DHT
8: peer p:=DHTLookup(t.hashValue);
9: p.publish(groupInvertedIndex.getPeerList(t));

10: end for
11: else
12: if !(mySuperPeer.isAlive()&mySuperPeer.canAcceptMe())

then
13: joinPCIR(); // rejoin a group
14: end if
15: mySuperPeer.groupInvertedIndex.update(myInvertedIndex);
16: end if
17: sleep(period);
18: end while

Because of the periodic republishing, peers do not have to act
in the case a regular peer leaves the network, either by expected
departure or by unexpected failure. The DHT itself automati-
cally recovers without loss of data (see for example [11, 19]).
The peer’s summary published at the super peer will also even-
tually expire, get removed from the super peer and, in turn, from
the DHT inverted index. In the meantime, any query routed to
this disconnected peer will simply fail, and the next relevant
peer will be selected for querying.

Super peers may also disconnect from the network. In this
case, the group’s peers detect the failure of the super peer in the
next publishing period and individually find and join another
group, as described in Alg. 1. Due to super peer churn, the pub-
lishings of a peer might not be propagated in the DHT within
one publishing period. The probability that this happens for i
consecutive periods is small, and in particular, pr = 1− (1− c)i.
For example, for a churn of 20%, the probability that the con-
tents of a peer are not published after 3 periods is less than 1%.
To avoid loosing already published information from the DHT,
we set the index entry expiration period to a multiple of the re-
publishing period length, e.g., 3 times the republishing period.
This ensures availability of the entries even under super peer
churn, without requiring the peers to take specific actions when
their super peer fails. Therefore, super peer churn does not im-
pose additional cost on the peers.

Reducing the cost of super peers. For reducing the network us-
age, all peers use delta updating to send their updated inverted
indices to their super peers. In case peers have no changes, they
send a single keep-alive message to notify their super peers that
they are still alive and they have no changes. These optimiza-
tions significantly reduce the network cost of super peers, as
well as the total network cost. Note that these optimizations
cannot be used in the flat DHT publishing scenario, as the DHT
lookup and the keep-alive or delta message would still be re-
quired per distinct term per peer, and the total number and size
of messages would not be reduced.

An additional measure taken towards reducing the cost of
super peers involves the DHT lookup implementation. In this
work we use recursive DHT lookups: lookups are handled
recursively by the DHT peers, without requiring interaction
with the originators of the lookup at each hop. Apart from
the efficiency benefits of recursive compared to iterative DHT
lookups [20], recursive DHT lookups distribute the lookup cost
to all DHT peers more evenly. Super peers, which initialize
the majority of the DHT lookups, only need to execute the first
lookup hop. The remaining lookup hops are distributed evenly
to all DHT peers.

4. PCIR Clustering-enhanced Algorithm

Basic PCIR algorithm reduces the required DHT lookups
by exploiting the term overlap in the group’s collection; only
one DHT lookup is created for each distinct term in the peer
group. This basic approach already accounts for a 5-times re-
duction of the total number of messages. The number of re-
quired messages can be further reduced by reorganizing peers
in the groups so that peers with similar content end up in the
same peer groups. As a result, super peers of the groups will
have fewer distinct terms, and they will need to perform fewer
DHT lookups for publishing the total terms of the collection,
yet without compromising completeness of the inverted index.

The clustering-enhanced PCIR algorithm clusters the peers
based on their contents, so that peers with similar contents are
assigned to the same group. We refer to these groups as peer
clusters. For building the peer clusters we propose an inexpen-
sive clustering algorithm based on Bloom filter representations
for the cluster and peer centroids. Each peer creates a Bloom
filter representation of its centroid by hashing all its terms in
an empty Bloom filter. Super peers are additionally responsible
for maintaining the Bloom filter representation of their cluster’s
centroid, which equals to the disjunction of the Bloom filters of
all the peers belonging to the cluster. For estimating the term
overlap between a peer and a candidate cluster, the correspond-
ing Bloom filter representations are compared.

To avoid comparing each peer’s Bloom filter with the Bloom
filters of all clusters, clustering-enhanced PCIR employs a
DHT-based inverted index to index the clusters: Super peers
index their top most frequent terms in the DHT. When a new
peer joins the network, it first identifies its top most frequent
terms, and uses the inverted index to discover all clusters with
common top terms. As we show later, this process offers proba-
bilistic guarantees that the peer joins the best cluster – the clus-
ter with the higher term overlap.

In the following we present the building blocks of clustering-
enhanced PCIR. In Section 4.1 we present the clustering objec-
tive function, and show how it is inexpensively estimated using
the Bloom filter representations of the peer and cluster centroid.
In Section 4.2 we describe a cluster centroid caching scheme
which is used to alleviate the workload of super peers. Sec-
tion 4.3 describes the changes at the DHT inverted index that
enable efficient peer clustering. The process of joining peers in
the clustering-enhanced PCIR network is put together in Sec-

6

λ Number of top frequent terms published per
super peer

µ Maximum number of clusters to compare
each virtual peer’s Bloom filter with

BFPi / BFCx Bloom filter of peer Pi / cluster Cx

m Bloom filter length in bits
k Number of hash functions per Bloom filter
tb(BFi) Number of bits set to true in BFi

Table 1: Notations for clustering-enhanced PCIR

tion 4.4. In all other aspects, clustering-enhanced PCIR algo-
rithm works like the basic algorithm.

4.1. Clustering objective function

Clustering is used for increasing the term overlap in super
peers. The clustering objective function needs to compute the
overlap between a peer and a cluster collection, and assign the
peer to the cluster with the larger overlap. To avoid exchanging
large inverted indices between peers for computing the over-
lap, peers estimate the cardinality of the overlap using Bloom
filters [16].

The clustering objective function is formally defined as fol-
lows:

Definition Given a peer Pi, and the Bloom filter for its collec-
tion BFPi . For a candidate cluster Cx, with Bloom filter centroid
BFCx , the objective function f (Pi,Cx) is:

f (Pi,Cx) =

 f ′(BFCx ,BFPi) , if Pi < Cx

f ′(BFCx−Pi ,BFPi) , if Pi ∈ Cx
(1)

where f ′(BFCx ,BFPi) gives the expected cardinality for the
overlap between the cluster Cx and the peer Pi using their
Bloom filters (cf. Theorem 4.1), and BF{Cx−Pi} is the Bloom fil-
ter of cluster Cx after removing the contents of the peer Pi. The
best cluster is the one that maximizes the objective function.

The following theorem shows how to estimate the cardinality
of the overlap between a cluster and a peer using Bloom filters.

Theorem 4.1. Let BFA and BFB denote the Bloom filters of col-
lections A and B respectively. With BF∧ we denote the Bloom
filter produced by bit-wise AND merging of the bit arrays of
BFA and BFB. We assume that all Bloom filters are of the same
size m, and use the same k hash functions. Then the expected
number of elements in A ∩ B is:

E(|A ∩ B|) =
m2 − m ∗ (tb(BFA) + tb(BFB)) + tb(BFA) ∗ tb(BFB)

k ∗ ln(1 − 1/m)

−
m2 − m ∗ (tb(BFA) + tb(BFB) − tb(BF∧))

k ∗ ln(1 − 1/m)
(2)

where tb(BFx) is the number of bits set to true in BFx.

The proof is included in the appendix.

Correctness of the objective function. The goal of peer cluster-
ing is to increase the term overlap at super peers. The objective
function is correct if, given a peer and a set of candidate clus-
ters, it selects the cluster that maximizes term overlap with the
peer. Since Bloom filters are probabilistic, it may happen that
the objective function picks the wrong cluster as the optimal.
Although a wrong peer clustering decision does not affect the
quality in terms of information retrieval, we compute the prob-
ability that the clustering objective function chooses the wrong
cluster, to show that moderate Bloom filter sizes are enough for
high-quality clustering.

Theorem 4.2. Let BFPi , BFCx and BFCy represent the Bloom
filters of peer Pi and clusters Cx and Cy respectively. Wlog.
assume that f (Pi,Cx) > f (Pi,Cy), where f (Pi,C j) denotes
the clustering objective function on the peer Pi and cluster C j

(Eqn. 1). Then, the probability of |Pi∩Cx| > |Pi∩Cy| is at least:

Pr
[
|Pi ∩Cx| > |Pi ∩Cy|

]
> 1−

exp

− f (Pi,Cy) ∗
(

2 ∗ f (Pi,Cx) − 2 ∗ f (Pi,Cy)
2 ∗ f (Pi,Cy) + f (Pi,Cx)

)2

/4

 ∗
exp

− f (Pi,Cx) ∗
(

f (Pi,Cx) − f (Pi,Cy)
2 ∗ f (Pi,Cy) + f (Pi,Cx)

)2

/2

 (3)

The proof is included in the appendix.
The important observation from Theorem 4.2 is that cor-

rectness probability increases exponentially with the value of
f (Pi,Cx) − f (Pi,Cy). Thus, even for small differences, the ob-
jective function is able to distinguish the right cluster with high
probability.

4.2. Cluster centroid caching
Super peers are responsible for maintaining the Bloom filter

for their cluster centroid. To avoid rebuilding the filter from
scratch every time a peer joins or leaves a cluster, super peers
maintain it using a counting Bloom filter. When a peer joins
a cluster, it sends its inverted index to the super peer of the
cluster. From the inverted index, the super peer generates the
corresponding Bloom filter, and adds it to the cluster’s counting
Bloom filter. When the peer publishing expires, i.e., it is not
updated in time, the super peer subtracts the peer’s Bloom filter
from the counting Bloom filter.

Super peers reduce their workload (both network and com-
putational) by caching the Bloom filter of their cluster to one
or more other peers in the network. We refer to these peers as
cache peers. Super peers also register contact details for the
cache peers in the DHT inverted index (see Fig. 4). When a
peer Pi wants to compare its centroid with a cluster, it retrieves
the cache location of the cluster centroid from the DHT, and
forwards its centroid filter to the cache peer. The cache peer
compares the two filters and returns the estimated overlap size
to peer Pi. The additional network workload required for main-
taining a fresh copy in the cache peer is negligible. In fact, we
can show that the proposed caching is always beneficial for su-
per peers, for reducing both their network and computational

7

Keyword Peer PF Max PF Super peer Cache
Football P1 12 17 P4 null

P3 9 21 P4 null
P9 1 19 P9 null
null 7 21 P4 P3

Volley P1 7 17 P4 null
.

Figure 4: Logical DHT Inverted Index for clustering-enhanced PCIR. Changes
compared to the basic PCIR Index are gray-shaded.

workload, and that the workload of the cache holders is always
less than the workload of the super peers.

To reduce network usage, super peers do not send count-
ing Bloom filters in full resolution to cache peers. A counting
Bloom filter at the super peer has 8 bits per counter, which al-
lows a maximum of 256 values per counter. To execute the ob-
jective function (Eqn. 1), a cache peer only requires a counting
filter of two bits per counter for finding both BFCx and BF{Cx−Pi};
it only needs to know whether a counter at the counting filter of
the cluster centroid has a value of 0, 1 or > 1. Thus, super peers
reduce the counting Bloom filters to 2-bit per counter, which
they send to cache peers. Cache peers can then compute BFCx

and BF{Cx−Pi} without requesting more information from their
super peers.

4.3. Aggregated Cluster Information Publishing

We enhance the DHT structure to enable efficient peer clus-
tering. Apart from peer granularity information, each super
peer additionally publishes aggregated cluster information for
its cluster. For each of the cluster’s top-λ most frequent terms,
the super peer publishes an extra record to the DHT, which
includes the overall cluster frequency and contact details of
the peer holding the cluster centroid Bloom filter (the cache
peer). The cluster granularity records are distinguishable from
the peer granularity records, from their values in the Peer and
Cache columns (see for example Fig. 4).

Publishing of the cluster-granularity data requires no addi-
tional messages; all cluster scores are piggy-backed on existing
DHT-publishing messages. The network overhead for publish-
ing each cluster score is only 24 bytes. Since only the top-λ
highest cluster scores are published per super peer, with λ typ-
ically less than 10, the total additional network usage per super
peer is usually less than 240 bytes per cluster.

4.4. Joining Peers in the Clustering-Enhanced Algorithm

As in basic PCIR, peers in clustering-enhanced PCIR first
join the DHT and then find a super peer to attach to. The two
algorithms differ in how peers select their super peers: peers
in basic PCIR randomly select and join a super peer, whereas
peers in clustering-enhanced PCIR select the super peer that
maximizes the term overlap between the peer collection and the
cluster collection.

Peers can evaluate the similarity of their collection and the
candidate peer cluster’s collections by using the clustering ob-
jective measure (Section 4.1). However, real-life peer collec-
tions, as real persons’ interests, are often quite diverse with re-
spect to the topics of interest. For example, a single peer may
collect documents about the topics of spontaneous nuclear fis-
sion, jazz music and Hollywood movies all-together. Trying to
find the best cluster for such multi-thematic peers is difficult,
and may lead to suboptimal clustering.

We address this issue by partitioning each peer to a set of
virtual peers with the use of document clustering. Ideally, each
virtual peer focuses on a single subject, so that efficient clus-
tering around super peers can be performed. Then, each vir-
tual peer joins the best-matching cluster for its own collection,
and posts its contents to the super peer of that cluster. While
a peer splits its content into several virtual peers, it participates
always as one node in the DHT. This approach reduces the aver-
age number of distinct terms per super peer, and therefore also
reduces the overall maintenance cost for full-text indexing.

We use standard K-Means to cluster the documents and cre-
ate the virtual peers. As clustering objective function, K-Means
uses Jaccard similarity [21], which reduces the distinct terms
per virtual peer. PCIR does not impose this clustering algo-
rithm, though. Each peer is free to select the actual clustering
algorithm, or even a partitioning hierarchy like MeSH, for de-
termining its virtual peers. In general, better peer partitioning
leads to better PCIR performance.

After a peer is partitioned to virtual peers, each of the virtual
peers independently finds a suitable peer cluster to join. Search-
ing for a suitable cluster is based on normal DHT lookups. First
the virtual peer performs a DHT lookup for each of its top-λ
most frequent terms and retrieves all the related clusters (Alg. 3,
lines 7-16). For each related cluster, the virtual peer computes
the partial cosine similarity based on the retrieved scores. Then
(lines 23-31), for the µ clusters with the highest partial cosine
similarity, it sends its Bloom filter to the peer that holds the
cluster’s centroid (the cache peer), and retrieves the expected
overlap size (cf. Eqn. 1). Finally, it joins the most similar clus-
ter based on the retrieved expected overlap sizes. If no suitable
cluster is found, the virtual peer creates a new cluster and be-
comes the super peer (lines 19-21).

Execution of the described algorithm requires λ DHT
lookups and at most µ peer-cluster comparisons. In total, find-
ing and joining a cluster incurs a maximum of λ ∗ log(n) + µ
total messages per virtual peer.

After a virtual peer joins a cluster, it periodically submits its
inverted index to the super peer of that cluster. This requires
only one message per virtual peer, and is effectively optimized
by compression and delta updating. When a virtual peer sends
its information, the respective super peer updates the local and
cached copy of the cluster centroid to reflect all current infor-
mation. Similar to the basic algorithm (Section 3), the only
synchronization required between peers and super peers is a
common expiration period; no global time is required.

Query processing and peer churn are handled in the same
way as in the basic PCIR system (Section 3).

8

Algorithm 3 Peer periodically joining a peer cluster
(clustering-enhanced PCIR)

1: // break to virtual peers
2: <virtualPeers>:=KMeans(myDocuments,numberOfClusters)
3: for virtualPeer vp ∈<virtualPeers> do
4: vp.BF=ComputeMyBloomFilter(vp.localterms)
5: Map<Cluster,Score> clusterScores;
6: TopTerms < T1,T2, . . .Tλ >:=TopK-Sort(vp.localterms, λ)
7: for all term t in TopTerms do
8: peer p:=DHTLookup(t.hashValue);
9: <Cluster,Score>relevantClusters:=p.getClusterList(t);

10: for all <c:Cluster,s:Score> in relevantClusters do
11: if clusterScores.containsKey(c) then
12: clusterScores(c):=clusterScores(c)+s;
13: else
14: clusterScores(c):=s;
15: end if
16: end for
17: end for
18: if clusterScores is empty then
19: // become a super peer
20: vp.isSuperPeer:=true;
21: vp.clusterInvertedIndex:=myInvertedIndex;
22: else
23: Sort all clusters on their score desc.
24: for top-µ clusters c do
25: if c.canAcceptMe() then
26: // the cluster is not overloaded
27: cp:=CachePeer(c) // peer caching the centroid
28: // compare my bf to cluster bf
29: BFSimScore(c):=cp.compare(vp.BF,cp.clusterBF)
30: end if
31: end for
32: Sort all clusters on the BFSimScore desc
33: Join the cluster with the maximum BFSimScore
34: end if
35: end for

5. Cost analysis

We now describe the cost model for the PCIR approaches.
By cost, we refer to the number of required messages for the
total system maintenance. The cost model does not include the
messages for constructing and maintaining the Chord ring it-
self, as these are the same in all the approaches.

We compute the cost for the case that each peer rejoins the
PCIR network at each iteration, i.e., it does not use delta updat-
ing, and at each iteration it needs to find the super peer from
scratch, even if its old super peer is still available. This makes
the cost analysis independent of the churn factor.

Throughout this section we use the following notations:

• n: Number of peers

• α: Average number of virtual peers per peer

• nsp: Number of super peers

• Dp: Average number of distinct terms per peer

• Dg: Average number of distinct terms per group/cluster

5.1. Flat DHT Publishing
We first assess the cost for publishing all terms in a flat DHT

setting. The expected cost (number of messages) for a DHT
lookup [11] is: Clookup = log(n). A peer requires on average Dp

lookups, one for each distinct term, and an additional message
per distinct term to publish the peer score in the DHT. There-
fore, for a network of n peers the total cost of the system is:

C f lat = n ∗ Dp ∗ (log(n) + 1) (4)

5.2. Basic PCIR
The total cost in the basic approach is the sum of: (a) C f :

the cost for finding and joining a group, and (b) Cu : the cost
for the super peers to update the DHT inverted index. We make
the cost analysis churn-independent by assuming that each peer
rejoins the network and finds a new super peer at each period.
The following paragraphs provide the details.

(a) Finding and joining a group. Each peer requires one DHT
lookup to find a super peer. Publishing all the data to the super
peer requires one more message. The total number of messages
C f for all the peers to find and join a group is C f = n∗ (log(n) +

1).

(b) Updating the DHT inverted index. Each super peer requires
Dg DHT lookups, which cause a total of Dg ∗ log(n) mes-
sages. In addition, publishing of the peer scores by the super
peer requires Dg additional messages. Since we have nsp su-
per peers, the cost for all super peers to update the DHT is
Cu = nsp ∗ Dg ∗ (log(n) + 1) messages.

The total number of required messages for the basic approach
is:

Cbasic = C f + Cu ≤ n ∗ log(n) + n + nsp ∗ Dg ∗ (log(n) + 1)
(5)

5.3. Clustering-enhanced PCIR
Each peer partitions itself to α virtual peers, and each virtual

peer behaves as a single peer. We therefore compute the cost of
each virtual peer independently.

The total cost in the clustering-enhanced approach is the sum
of: (a) C f : the cost for the α ∗ n virtual peers for finding and
joining a cluster, and (b) Cu : the cost for the super peers to up-
date the DHT inverted index. The following paragraphs provide
the details.

(a) Finding and joining a cluster. For finding a cluster, a virtual
peer performs a lookup on its λmost frequent terms in the DHT.
This requires at most λ∗log(n) messages per virtual peer. It then
detects the top-µ most relevant clusters, sends its Bloom filter
to the peers assigned the responsibility of caching the cluster
Bloom filters, and retrieves the comparison result (the objective
function values). This costs at most 2µ messages per virtual
peer. Finally, each virtual peer submits its inverted index to
the most similar super peer in a single message, and the super
peer updates the cached copy of the Bloom filter (if required).
The total number of required messages is upper-bounded by
C f ≤ α ∗ n(λ ∗ log(n) + 2 ∗ µ + 2).

9

(b) Updating the DHT inverted index. Each super peer needs
to publish the inverted index for its cluster in the DHT. This
requires Cu = Dg ∗ (log(n) + 1) per super peer, like in the basic
approach.

The total cost for the clustering-enhanced approach is upper
bounded by:

Ccluster =C f + Cu (6)
≤n ∗ α(λ ∗ log(n) + 2 ∗ µ + 2) + nsp ∗ Dg ∗ (log(n) + 1)

5.4. Cost comparison

We now compare the expected cost for the basic PCIR and
the flat DHT approach. For this we assume, as is common in
IR [22, 23], that the dictionary size of each peer follows Heap’s
law [23]. We denote the length of a document, i.e., the number
of words it consists of, as len(d), and the length of a document
collection len(DC(p)) =

∑
d∈DC(p) len(d). According to Heap’s

law, the number of new terms added to the set of all terms by a
new document decreases for each additional document. For the
document collection DC(p) of peer p, the number of distinct
terms is Dp ≈ k ∗ len(DC(p))β, where k and β are parameters
dependent of language and text type.

Theorem 5.1. Given a P2P network of n peers structured over
a DHT, with dictionary size following Heap’s law. Let C f lat

denote the number of messages required by flat DHT indexing
and Cbasic the number of messages required by basic PCIR. The
expected ratio of Cbasic/C f lat is: E(Cbasic/C f lat) ≈

(
nsp/n

)1−β
.

The proof is included in the appendix.

From Theorem 5.1 we see that the expected ratio of
Cbasic/C f lat is dependent on: (a) the characteristic β value for
the collection, and (b) the ratio of super peers to peers. Typical
values for β are in the range of 0.4 < β < 0.6, so the exponent is
typically between 0.4 and 0.6. When the number of super peers
decreases, the ratio gets higher, and the cost of the PCIR basic
approach is reduced.

On the other hand, we do not want to overload the super
peers. We can determine the number of required peers for a
given average load, i.e., the number of terms loadSP the super
peer needs to publish. From Heap’s law we can derive that

E
(

Dg

Dp

)
= (n/nsp)β (see proof of Theorem 5.1 in the appendix).

To get an expected number loadSP of terms, we set Dg = loadSP.
This gives us loadSP = Dp ∗ (n/nsp)β. By solving the equation
for nsp, we find the number of required super peers such that
their average load is loadSP: nsp = n ∗ (Dp/loadSP)

1
β .

Evaluation of the above equations requires knowledge of Dp

and of the collection’s characteristic β value. To estimate these
values in real setups, we use sampling. Our experimental eval-
uation presented in Section 6 shows that sampling of a very
small number of peers (0.3% of the total peers) is sufficient for
estimating these values and thus for getting accurate cost esti-
mations.

The expected number of messages per super peer can also be
computed. Since each super peer needs to publish Dg terms, it

requires 2Dg messages for initiating the DHT lookup and for
publishing the terms. By participating in the DHT, a super peer
is also required to route some DHT messages generated from
other super peers while publishing their collections. The total
number of these messages is ≈ nsp ∗ Dg ∗ log(n). Each super
peer routes on average nsp ∗ Dg ∗ log(n)/n of these messages.
In addition, each super peer needs to receive the updates from
all the peers belonging to its group, which cause an additional
n/nsp messages. The total number of messages per super peer
is 2 ∗ Dg + nsp ∗ Dg ∗ log(n)/n + n/nsp.

With respect to the clustering-enhanced approach, the cost
ratio is:

Ccluster

C f lat
≈

nsp ∗ Dg ∗ (log(n) + 1)
n ∗ Dp ∗ (log(n) + 1)

(7)

Equation 7 cannot be simplified further, as we did for the ra-
tio of Cbasic/C f lat. The analysis for the basic PCIR is based
on the random assignment of peers to groups. This assump-
tion is not valid for the clustering-enhanced approach, where
each peer decides on the cluster to join based on its collection.
Thus, the characteristic value of β for each cluster collection at
the clustering-enhanced PCIR is significantly different than the
value of β for a single peer document collection.

6. Experimental evaluation

In addition to the theoretical cost analysis, we also conducted
a large-scale experimental evaluation of PCIR. The objective
of the experiments was to evaluate the two PCIR variants on
real-world datasets with respect to efficiency, and to compare
them with the current state-of-the-art approaches for DHT pub-
lishing. The chosen experimental configurations cover a wide
range of application scenarios, and thoroughly investigate the
suitability of the PCIR variants for different system and net-
work configurations.

6.1. Experimental setup and evaluation criteria
The efficiency of the two PCIR algorithms was experimen-

tally evaluated using collections of real documents. In partic-
ular, we simulated P2P networks of up to 5000 peers running
the two PCIR variants, and measured the total network cost for
each algorithm to maintain the DHT inverted index. As a base-
line we have used the flat DHT algorithm, according to which
every peer publishes its own inverted index in the DHT. For
the simulation we considered networks of size N in the range
1000 ≤ N ≤ 5000.

We have repeated all experimental setups with and without
churn. For the scenarios without churn, we kept the peers and
their contents static throughout the experiment. For the sce-
narios with churn, at each iteration we selected randomly up to
20% of the peers and replaced them with an equal number of
new peers, carrying new documents. To make the experimental
results independent of the churn factor, we restricted the peers
in PCIR in the following ways: (a) peers and super peers did not
use delta updating, and, (b) peers were forced to find and rejoin
a peer group or a peer cluster at every iteration. Under these

10

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f m
es

sa
ge

s
(p

er
ce

nt
ag

e
of

 fl
at

 D
H

T)

λ value

PCIR-Basic:1000 Peers
PCIR-Basic:3000 Peers
PCIR-Basic:5000 Peers

PCIR-Clustering:1000 Peers
PCIR-Clustering:3000 Peers
PCIR-Clustering:5000 Peers

Figure 5: Number of messages for PCIR with upper bound=40000 terms per
super peer.

restrictions, churn had no effect on the results. The results in-
cluded in this section correspond to the configuration with 20%
churn.

The main body of experiments was performed using peer
granularity indexing, which is the most widely used. Further-
more, to confirm the general applicability of PCIR for main-
taining different types of metadata in the DHT and enabling
different information retrieval techniques, we use PCIR to sup-
port three additional IR techniques over PCIR: (a) document-
granularity indexing [24], also employed in other popular
P2P systems, e.g., ALVIS [4] (b) sk-STAT [13], which uses
peer-granularity indexing with additional meta-data, (c) mk-
STAT [13], a query-driven indexing enhancement of sk-STAT,
which includes in the inverted index also some frequently-
queried multi-term keys.

For the PCIR approach we varied the following parameters:

• Top-λ terms, top-µ super peers: We repeated the experi-
ments for λ = [1, 2, . . . , 20] and µ = [1, 2, . . . , 20].

• Upper bound for super peer workload: We experimented
with upper bounds ranging from 5000 terms to 40000
terms per super peer.

For clustering-enhanced PCIR, we set the Bloom filter length
and number of hash functions so that the Bloom filter error
probability never exceeded 10%. In particular, we found the
optimal Bloom filter length and number of hash functions for
each configuration by assuming that the number of objects in
the Bloom filters is equal to the upper bound for the super peer
workload (5000 to 40000). We also ensured that for the same
upper bound, both basic and clustering-enhanced PCIR create
the same number of groups/clusters so that super peers in the
two approaches represent the same number of peers on aver-
age. Since the number of clusters in the clustering-enhanced
approach is dynamically determined, at each repetition we first
executed the clustering-enhanced setup and then initialized the
basic PCIR with the same number of groups.

In the clustering-enhanced PCIR experiments, all peers par-
titioned their collection to three virtual peers by running K-

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tr
an

sf
er

 V
ol

um
e

(p
er

ce
nt

ag
e

of
 fl

at
 D

H
T)

λ value

PCIR-Basic:1000 Peers
PCIR-Basic:3000 Peers
PCIR-Basic:5000 Peers

PCIR-Clustering:1000 Peers
PCIR-Clustering:3000 Peers
PCIR-Clustering:5000 Peers

Figure 6: Transfer volume for PCIR with upper bound=40000 terms per super
peer.

Means. However, it is not required by the algorithm that all
peers are partitioned to an equal number of virtual peers. The
number of document categories in real-life peers is expected
to vary, and the user, or the partitioning algorithm itself, may
decide on a different number of virtual peers.

Construction of peer collections. All experiments were con-
ducted on two datasets, the REUTERS Corpus Volume I
(RCV1) [25] and the MEDLINE collection [26]. The results
were very similar for the two datasets, so we present only the
details for the REUTERS dataset. The complete REUTERS
collection includes more than 800,000 categorized newswire ar-
ticles, pre-processed with stopword filtering and stemming. For
the evaluation we used a subset of 160,000 randomly selected
articles.

Real-life peer collections, similar to real persons’ interests,
are often multi-thematic. Some users may be well-focused,
having very specific documents of only one topic. Other users
may focus on a couple of non-related topics, and yet others
may just collect lots of diverse documents. We simulated all
such users by using the classification which accompanies the
REUTERS document collection. The documents used in the
experiments belonged to a total of 148 categories. Peers were
creating their collections by: (a) randomly selecting three ran-
dom categories, and, (b) randomly selecting 20 documents for
each of these categories. At the end, each peer had exactly 60
distinct documents. Since the REUTERS classification had cat-
egories of different specificities, some peers ended up having
many documents of diverse topics, while other peers were fo-
cused on three or less very specific topics and had very similar
documents overall.

Evaluation criteria. We compare the index maintenance costs
of basic and clustering-enhanced PCIR with the costs of the flat
DHT approach, for all publishing strategies (peer and document
granularity, sk-STAT, and mk-STAT). We measure the number
of messages as well as the total data transfer volume caused by
each algorithm as follows:

11

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 5000 10000 15000 20000 25000 30000 35000 40000

N
um

be
r o

f m
es

sa
ge

s
(p

er
ce

nt
ag

e
of

 fl
at

 D
H

T)

Maximum terms per super-peer

PCIR-Basic:1000 Peers
PCIR-Basic:3000 Peers
PCIR-Basic:5000 Peers

PCIR-Clustering:1000 Peers
PCIR-Clustering:3000 Peers
PCIR-Clustering:5000 Peers

Figure 7: Number of messages for PCIR: λ = 6, µ = 2 and varying upper
bound.

• Number of messages: We count all messages exchanged
in the system, including all DHT and super peer related
messages.

• Transfer volume: We measure total transfer volume. Apart
from the message body (the actual data), we include a
network header overhead of 64 bytes for each transac-
tion (theoretical minimum for TCP/IP network transac-
tion). GZIP compression is applied to the message body
whenever this reduces the message size.

The described experimental setups were repeated 6 times,
and each execution was let to run for 4 iterations (4 DHT peri-
odic submissions). In the following sections we report average
results over 6 repeats. Section 6.2 focuses on the experimental
results for peer-granularity indexing. Finally, in Section 6.3 we
describe the experimental setup and the results corresponding
to the three additional publishing strategies.

6.2. Results for peer-granularity indexing

We now report the experimental results for peer-granularity
indexing (see Section 3 for a brief description), as used by, e.g.,
Minerva [5]. Peer granularity indexing is the most widely used,
since it provides a favorable compromise between the IR quality
and the network cost for indexing [12].

Figures 5 and 6 plot the number of messages and transfer vol-
ume required by each approach for different network sizes. X-
axis shows the λ value and Y-axis shows the network resources
required by each approach, averaged over 6 runs. The cost of
flat DHT submission is used as a baseline (always 100% be-
cause it is independent of λ). Basic PCIR costs are also not
directly relevant to λ; they are related indirectly to λ via the
number of groups (the number of groups at basic PCIR was
equal to the number of clusters at clustering-enhanced PCIR,
which was dependent on λ).

The results are for an upper bound of 40000 terms per super
peer. For clarity we include only results for 1000, 3000, and
5000 peers. In these experiments, the 40000 terms upper bound
is never reached, so the results for the experiment without an

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 5000 10000 15000 20000 25000 30000 35000 40000

Tr
an

sf
er

 V
ol

um
e

(p
er

ce
nt

ag
e

of
 fl

at
 D

H
T)

Maximum terms per super-peer

PCIR-Basic:1000 Peers
PCIR-Basic:3000 Peers
PCIR-Basic:5000 Peers

PCIR-Clustering:1000 Peers
PCIR-Clustering:3000 Peers
PCIR-Clustering:5000 Peers

Figure 8: Transfer volume for PCIR: λ = 6, µ = 2 and varying upper bound.

upper bound are the same. Parameter λ takes values from 1 to
20, and µ is set to one. Because of the high upper bound of
terms per cluster in this experiment, there is never more than
one candidate cluster for a joining peer. Thus, increasing µ to
more than one has no effect in the results for this case.

Network savings grow with network size (Fig. 5 and 6). For
λ ≤ 10, clustering-enhanced PCIR is significantly better than
basic PCIR. Clustering-enhanced PCIR reaches its optimal per-
formance for λ ≈ 8. Very low λ values (λ ≤ 3) result in the
creation of some small peer clusters and limit the effectiveness
of the peer clustering algorithm. 90% of the optimal perfor-
mance of clustering-enhanced PCIR is already obtained with
λ = 5. For 6 ≤ λ ≤ 10, the performance of clustering-enhanced
PCIR stays almost unchanged. For λ > 10, the two PCIR
variants have comparable performance. For very high λ, the
overall number of messages and transfer volume at clustering-
enhanced PCIR increases because of the increase in the cost for
a peer to find and join a cluster.

Finding the optimal λ and µ values. The λ and µ values for
which clustering-enhanced PCIR minimizes the network costs
depend on the network size, upper bound, and on the collection
(see Section 5). An online optimization similar to [27] can be
used for optimizing the values and minimizing the cost. How-
ever, our experiments show that in practice this is not necessary,
since varying λ between 5 and 10 has only a small effects on
performance, and increasing µ beyond 2 is not beneficial. For
all experiments, a setup with λ = 6 and µ = 2 achieved at least
90% of the savings obtained by the optimal configuration. Es-
pecially for the larger networks (i.e., 3000 peers and more), the
configuration with λ = 6 and µ = 2 achieved more than 95% of
the optimal performance. The difference between the optimal-
minimal cost and the cost of PCIR with λ = 6 and µ = 2 was
decreasing with the increase of network size.

From these results we conclude that online optimization for
the values of λ and µ is not necessary, and constant values of
λ = 6 and µ = 2 give near optimal results. The rest of the
results presented in this section are for λ = 6 and µ = 2.

12

20000

30000

40000

50000

Flat DHT PCIR‐Clustering: SP_Maint PCIR‐Clustering: SP_DHT

PCIR‐Basic: SP_Maint PCIR‐Basic: SP_DHT

0

10000

20000

30000

40000

50000

5000 10000 15000 20000 25000 30000 35000 40000

Flat DHT PCIR‐Clustering: SP_Maint PCIR‐Clustering: SP_DHT

PCIR‐Basic: SP_Maint PCIR‐Basic: SP_DHT

Figure 9: Number of messages for PCIR super peers: λ = 6, µ = 2 and varying
upper bound.

Varying the maximum terms per super peer. In practice, each
super peer sets its upper bound itself, based on the network re-
sources it can offer. A large upper bound enables better clus-
tering and higher term overlap. In our experiments, we assume
that all the super peers have the same network resources and set
their upper bound to the same value.

Figures 7 and 8 present the total maintenance cost (for both
peers and super peers) for different upper bound values, for
λ = 6 and µ = 2. For an upper bound of 5000 terms, clustering-
enhanced PCIR has the same performance as the basic PCIR.
This is expected since such a low upper bound is reached al-
ready by the document collections of six peers on average.
Therefore, peer clustering cannot effectively increase the term
overlap in this case. With larger upper bounds, term overlap in
the clusters increases, and less clusters are required overall. In-
creasing the upper bound beyond 20000 terms further reduces
the total cost but at a slower rate.

It is also interesting to see the ratio between physical peers
and super peers for the case of clustering-enhanced PCIR, and
to investigate how this corresponds to the upper bound per super
peer. Table 2 includes example values for the network of 5000
peers, with different upper bounds. As expected, increasing the
upper bound clearly results to less super peers. However, at
some point, i.e., after 20000 terms, the number of super peers
does not change significantly. This denotes that it is infrequent
that the super peers acquire a larger dictionary, and it happens
for two reasons. First, the dictionary size per super peer follows
the Heap’s law (see Section 5), and therefore it grows slowly
with the number of peers and documents in the cluster. Second,
the virtual peers and documents are assigned to each super peer
such that the term overlap is increased, i.e., using clustering.
Therefore, each peer contributes only a small number of new
terms in its super peer. As such, the upper bound per super peer
does not need to be large for PCIR to be efficient.

Super peers workload. To ensure that super peers do not con-
stitute a bottleneck for PCIR we also count the network work-
load of super peers in PCIR. For clustering-enhanced PCIR, we
measure the total workload of the physical peer which hosts the

2000

2500

3000

3500

4000

4500

5000

Flat DHT PCIR‐Clustering: SP_Maint PCIR‐Clustering: SP_DHT

PCIR‐Basic: SP_Maint PCIR‐Basic: SP_DHT

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5000 10000 15000 20000 25000 30000 35000 40000

Flat DHT PCIR‐Clustering: SP_Maint PCIR‐Clustering: SP_DHT

PCIR‐Basic: SP_Maint PCIR‐Basic: SP_DHT

Figure 10: Transfer volume for PCIR super peers in Kbytes: λ = 6, µ = 2 and
varying upper bound.

Upper bound #Super peers Ratio
5000 844 0.168
10000 278 0.055
15000 156 0.031
20000 118 0.023
25000 104 0.020
30000 98 0.019
35000 96 0.019
40000 93 0.018

Table 2: Number of super peers, and ratio of super peers:total physical peers
for different upper bounds, for a network of 5000 peers

super peer and 2 regular virtual peers. For the basic PCIR ap-
proach, since the physical peers host exactly one virtual peer
(super peer or regular peer), the workload of the physical peer
includes only the workload of the super peer.

For both PCIR variants we distinguish between two types of
workload:

SPMaint: Workload that is generated because of the role of
the peer as super peer, i.e., for maintaining the peer
groups/clusters, and for publishing the peer scores for all
group/cluster terms.

SPDHT: Workload generated because the super peer partici-
pates in the DHT, i.e., for routing DHT lookups which are
issued from other peers.

Figures 9 and 10 plot the network workload of super peers at
the largest setup with 5000 peers. The results are for λ = 6 and
µ = 2 (the configuration which gives at least 90% of the opti-
mal performance for all setups). X-axis shows the upper bound
of terms per super peer and Y-axis corresponds to the average
network workload per super peer. For the clustering-enhanced
PCIR, the super peer workload includes the total workload of
the physical peer, i.e., the workload generated by the super peer
and by the two regular virtual peers. For the basic PCIR ap-
proach, since the physical peer hosts only one virtual peer (su-
per peer or regular peer), the workload of the physical peer in-
cludes only the workload of the super peer. For reference, the

13

figure also includes the load per physical peer in the flat DHT
approach which maintains the same DHT index.

In all experiments, average network workload of super peers
at both PCIR variants is less than the respective workload of
regular peers at the flat DHT indexing approach. Regarding the
number of messages, super peers at both PCIR variants have
significantly less workload compared to regular peers at flat
DHT indexing. Regarding transfer volume, super peers at basic
PCIR have comparable cost with the physical peers at flat DHT
indexing, while super peers at clustering-enhanced PCIR still
have substantially less transfer volume compared to the physi-
cal peers at flat DHT indexing.

Figure 9 shows that for the case of clustering-enhanced
PCIR, the number of messages per super peer decreases with
the upper-bound per super peer, even though super peers are
burdened with indexing more terms. This happens because
with higher upper bounds, peer clustering achieves higher term
overlap in the super peers. With higher term overlap, fewer
DHT lookups are created for indexing all peers, and fewer DHT
lookup messages need to be routed over the DHT. Therefore,
the number of messages is substantially reduced for all partici-
pating peers (both regular peers and super peers). The network
savings per super peer attributed to this reduction (reduction in
cost SPDHT) are more than the additional cost imposed at the
super peer because of the higher upper bound (increase in cost
SPMaint). As a result, the total number of messages per super
peer is reduced with an increase of the upper bound.

PCIR super peers also incur less transfer volume compared
to the flat DHT peers, even for the maximum upper bound of
40000 terms per super peer (Figure 10). For low upper bound
values – less than 20000 terms – super peers in basic and
clustering-enhanced PCIR have comparable transfer volume.
However, for higher upper bounds – more than 25000 terms
– peer clustering becomes more effective, and super peers in
clustering-enhanced PCIR end up with significantly less trans-
fer volume compared to super peers in basic PCIR. We also see
that in contrast to number of messages, transfer volume per su-
per peer increases when the upper bound is increased. This is
expected because for a higher upper bound, more virtual peers
are allowed to join each super peer. Although each virtual peer
contributes only a small number of messages for its super peer,
it needs to send its complete inverted index to its super peer, and
this increases the transfer volume of the super peer. However,
as explained in Section 3, each super peer can choose the upper
bound for its workload independently so that its total workload
does not exceed its capabilities.

Finally, for upper bounds higher than 30000 terms, the cost
related to the super peer role (cost SPMaint) does not change sig-
nificantly, meaning that cluster sizes of most super peers never
reach the higher upper bounds. This observation is also con-
firmed from the results in Table 2, which show that by increas-
ing the upper bound to more than 30000 terms, only 5 clus-
ters are affected. According to clustering-enhanced PCIR al-
gorithm, when peers are not similar enough to be clustered to-
gether, new clusters are created, so that centroids of existing
clusters do not shift. Only super peers that have chosen a high
upper bound and also have a centroid which is very similar to

many peer centroids have an increase in their workload.
To keep the results independent of peer collection updates,

peers did not use delta updating in the aforementioned experi-
ments. In real-world deployments, virtual peers would not be
required to send their whole inverted index at their super peers
at each step. They could instead update the inverted indices at
their super peers sending only their changes. This would sig-
nificantly decrease the overall network load, and especially the
transfer volume of the super peers. Note that delta updating is
not beneficial for flat DHT publishing, where the messages are
generally very small.

Cost estimation accuracy. The experimental results also sup-
port the cost equations presented in Section 5. Accuracy of
the estimations was confirmed as follows. We first incremen-
tally sampled a small number of peers (0.3% of the total peers),
and counted the distinct and total terms for each sample. By
applying the Gauss-Newton method for nonlinear fitting we es-
timated the value of β for the text collection (0.59 for Medline
and 0.55 for the Reuters collection). Then we ran the flat DHT
and the basic PCIR approach for all network sizes and mea-
sured the number of messages required by the two approaches.
We also computed the expected cost ratio Cbasic/C f lat, based on
Theorem 5.1. The cost ratio computed experimentally was very
close to the expected cost ratio. In particular, the maximum dif-
ference between the expected and experimental value was less
than 7%, and the average difference was around 4%. Especially
regarding networks larger than 3000 peers, average difference
was reduced to less than 3% because of the larger sample size
for estimating β. Nevertheless, even for the largest network of
5000 peers, sampling was still inexpensive as it involved only
15 peers.

Summary: The experimental results demonstrate that both
PCIR approaches are significantly more efficient than flat DHT
indexing. For large network sizes, cost for generating exactly
the same inverted index with cluster-based PCIR is an order
of magnitude less than the corresponding cost with flat DHT
indexing. Network workload per super peer is also less than
network workload of regular peers in the flat DHT indexing
approach.

6.3. Results for additional publishing strategies

To confirm the general applicability of PCIR for optimizing
different indexing strategies, we also implemented three addi-
tional index publishing strategies over PCIR. The first one con-
structs document-granularity inverted indices, for increased re-
trieval quality [24]. Variants of document granularity indexing
are used in well-known P2P systems, e.g., ALVIS [4], there-
fore it is important to show that PCIR can also support these
systems. The second and third approach are sk-STAT and mk-
STAT [13]. Both approaches employ peer-granularity indices,
similar to Minerva [5]. However, the inverted index in sk-STAT
includes additional term statistics per peer using hash sketch
synopses, which are used to improve IR precision and effi-
ciency. In addition to this, mk-STAT uses query logs to iden-
tify and index in the DHT interesting term combinations, which

14

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 5000 10000 15000 20000 25000 30000 35000 40000

T
ra

ns
fe

r
V

ol
um

e
(p

er
ce

nt
ag

e
of

 fl
at

 D
H

T
)

Maximum terms per super-peer

Document granularity Basic
mk-STAT Basic
sk-STAT Basic

Document granularity Cluster
mk-STAT Cluster
sk-STAT Cluster

Figure 11: Transfer volume for different publishing strategies with PCIR

are used for answering multi-term queries efficiently. The three
publishing strategies are described in more details in Section 7.

For this experiment, we have implemented the three publish-
ing strategies as described in the original papers, and simulated
them in our experimental setup. Each approach was simulated
in two variants: (a) where each peer publishes its own informa-
tion (i.e., flat DHT indexing), as proposed in the corresponding
original works, and, (b) where the PCIR algorithm is applied
to reduce index maintenance cost. mk-STAT requires a query
log to identify frequent term combinations. We have used the
AOL query log to simulate queries, and configured the algo-
rithm to consider the 25% most frequent queries as candidates
for multi-term indexing. The conditional probability threshold
for indexing a multi-term was set to 0.1, as proposed in [13].
PCIR was configured with λ = 6 and µ = 2.

Figure 11 presents the transfer volume for the three publish-
ing strategies, for different upper workload bounds for the su-
per peers. The presented results are for a network of 5000
peers. For each publishing strategy, the transfer volume of
PCIR is presented as a percentage of the required transfer vol-
ume for flat DHT indexing for the particular publishing strat-
egy, as incurred by [4, 13]. We see that PCIR offers substantial
performance improvements with respect to the three alterna-
tive publishing strategies. The gain is comparable to the peer-
granularity strategy, discussed in Section 6.2. The clustering-
enhanced PCIR variant is again significantly better than its ba-
sic counterpart. Similar to the results for the peer-granularity
strategy, the network gains increase with the super peers upper
bound, up to an order of magnitude lower cost compared to the
baselines for upper bounds higher than 30000 terms.

The number of messages required by the three alternative
publishing strategies is equal to the peer-granularity strategy, as
reported in Section 6.2. As explained in [13], this also holds for
mk-STAT, even though it maintains additional multi-term keys
in the DHT, because the additional information is piggy-packed
on single-term maintenance messages.

Summary: The experimental results with additional pub-
lishing strategies confirm that PCIR is equally effective when
used for document-granularity publishing, query-driven pub-

lishing, and sk-STAT. Independent of the publishing strategy,
clustering-enhanced PCIR imposes an order of magnitude less
transfer volume in the participating peers compared to the stan-
dard approach where each peer publishes the same information
for itself.

7. Related Work

7.1. P2P Information Retrieval

P2P information retrieval has been studied in a number
of previous publications. The first proposals focused on
distributed IR in unstructured networks, using approximated
system-wide information. PlanetP [28] is one of these sys-
tems. It uses gossiping to distribute peer content summaries,
represented by Bloom filters, to all participating peers. From
these summaries each peer computes peer frequencies, which
are used to rank peers for a given query without central co-
ordination. Due to the usage of gossiping for distribution of
collection-wide information, PlanetP and similar unstructured
P2P approaches exhibit only limited scalability.

To overcome these limitations, super peer topologies were
proposed, where dedicated nodes take the responsibility for in-
dex maintenance and access[29, 30]. While these systems scale
better, they require peers with very good network connections
and high availability to cope with the workload imposed by
these tasks.

P2P IR systems based on DHTs avoid this load balancing
issue and promise high scalability due to the fact that DHT
costs only grow logarithmically with network size [31, 4, 5].
As explained in Section 2, these systems enable information
retrieval by constructing a distributed inverted term index. As
shown, the main weakness of DHT-based P2P IR systems is
the high effort for maintenance of the inverted index. Previous
systems vary granularity and completeness of the inverted in-
dex, resulting in different quality/cost tradeoffs. In the ALVIS
system [31, 4], peers index the terms for each of their docu-
ments independently (document-granularity index). In this way
ALVIS achieves high performance query execution and high
information retrieval quality, but at a high cost for the index
maintenance. In contrast, peer-granularity systems trade in-
dex accuracy with maintenance cost. For example, the peers
in Minerva [5, 6] aggregate their documents’ scores per term to
produce a peer score for each term. To address the inability of
collecting document-granularity statistics that can improve the
IR quality, sk-STAT [13] which builds on top of Minerva, en-
hances the peer scores with all document identifiers having each
term (e.g., their file names), represented as hash sketches. Al-
though maintenance cost for peer-granularity systems is lower
compared to document-granularity systems, the approach still
does not scale for full-text indexing because the total number
of distinct terms per peer, and the number of DHT lookups, are
not reduced. In fact, Li et al. [7] have shown that a P2P solution
cannot scale to a large network size if full-text indexing is used,
mainly because index maintenance becomes too expensive. Our
experiments, presented in Section 6, further suggested that the
main fraction of network cost is generated by the huge number

15

of DHT lookups, which is independent of the granularity of the
inverted index, and that by reducing the DHT lookups one can
efficiently reduce the overall index maintenance cost.

The Adlib approach [32] follows a different direction for re-
ducing network cost. It establishes a two-tier structure, where
a first tier divides the documents into independent, equal-sized
partitions, called domains. Within each domain, nodes build a
distributed index for the documents, which is then offered in
the second tier for querying. By tuning size and number of
domains, index maintenance can be traded against query effi-
ciency. This approach reduces the number of DHT lookups, but
only with trade-offs for query execution, either in the quality
of the results or in the query cost. If full-text querying over
the whole P2P network is required, Adlib is less efficient than
traditional flat DHT indexing.

Another way to reduce network costs is to index only a sub-
set of terms occurring in a peer’s collection. Peers in PNear [9]
randomly choose a subset of the terms to be indexed. Crespo
and Garcia-Molina [33] organize the peers into semantic over-
lay networks by asking each user to manually select the terms
for her files. The proposal by Loo et al. [8] builds a hybrid
Gnutella/DHT infrastructure to limit the network cost. Only
rare items are indexed in the DHT, while search for frequent
items is done via message flooding in the Gnutella topology.
In general, the systems in this family reduce DHT maintenance
cost significantly, as peers do not publish all their terms. How-
ever, because of the incomplete index, retrieval quality is re-
duced.

Nguyen et al. [34] follow a different approach for reducing
the inverted index maintenance cost, called adaptive distributed
indexing. Instead of indexing all terms at a preselected granu-
larity – either peer granularity or document granularity – each
peer forms small groups of its documents and indexes the terms
of each group as a large virtual document. The publishing gran-
ularity, i.e., the size of the document groups, is selected such
that overall cost for index maintenance and query execution
is reduced. In contrast to PCIR, adaptive distributed indexing
does not focus on reducing the number of DHT lookups which
constitute the major indexing cost. In fact, number of DHT
lookups is orthogonal to the indexing granularity level. There-
fore, adaptive distributed indexing can also benefit from PCIR,
for reducing the DHT lookups, and thereby drastically reducing
the total indexing cost.

The concept of query-driven indexing has also been recently
exploited. For example, in a recent version of ALVIS [14],
peers identify frequent multi-term queries, and cache their
results in the DHT. This offers faster query execution with
lower network overhead, albeit at the expense of a larger in-
verted index over the DHT. To reduce this additional cost, mk-
STAT [13], another query-driven indexing approach, imposes
additional constraints on what constitutes an interesting multi-
term query: terms that are highly statistically correlated in the
documents are not considered interesting, since querying for
one of the terms alone already returns most of the results. As
we have already shown in Section 6.3, PCIR also enables sub-
stantial network savings for query driven indexing.

Hierarchical DHTs have also been introduced, as a mean to

foster efficient bandwidth utilization and a better adaptation to
the underlying physical network [35, 36]. The latter point is
promising, especially for information retrieval tasks in peer-to-
peer networks. However, a theoretical analysis shows that cur-
rent proposals for hierarchical DHTs are still less effective in
number of messages compared to flat DHTs [36].

The issue of too many DHT accesses can also be partially
alleviated by buffering and aggregating small DHT messages
with the same destination [37]. This optimization is orthogonal
to the term indexing strategy and can be used to further opti-
mize any approach, including the one proposed in this work.
In fact, PCIR also generates small messages – DHT lookups –
therefore it can naturally benefit from message aggregation, as
long as this aggregation does not cause performance issues for
the system. Examining the benefits of integrating PCIR with
message aggregation at the network layer is part of our current
work.

In this work we have applied PCIR on two different peer-
granularity publishing strategies [13, 5], a query-driven strat-
egy [13], as well as a document-granularity strategy [24]. How-
ever, the application of our approach to other DHT-based IR
systems is straightforward. For example, a recent version of
ALVIS [38] increases query execution efficiency by changing
the way documents are indexed: Instead of publishing only the
term scores for each document, each peer identifies the highly
discriminative keys from each document – each key can consist
of more than one term – and uses these keys to index the doc-
ument. For indexing all highly discriminative keys, the number
of required DHT lookups is increased. An indexing scheme
such as the one proposed by PCIR can effectively reduce the
indexing cost for this approach too, without interfering with the
information retrieval quality or with the query execution effi-
ciency. Other DHT-based systems that perform full-text index-
ing, e.g., [34], can also employ PCIR for reducing the network
cost, without affecting their query execution part.

7.2. Distributed peer clustering
In this work we developed a P2P clustering algorithm which

enables peers that share similar collections to group together
in a P2P network. Although the focus of this work is not on
proposing a high-quality P2P clustering algorithm, an inexpen-
sive and effective peer clustering algorithm is important for the
performance of PCIR. Some previous approaches exist for P2P
clustering, but none of them is suitable for our setup. Ham-
mouda and Kamel [39] use a hierarchical topology for the co-
ordination of K-Means computation. Local K-Means is per-
formed at each hierarchy level, and the clustering results are
merged hierarchically to produce the final centroids. However,
the reported experiments already show that the algorithm suf-
fers in large networks; already for 65 peers the F-Measure qual-
ity drops to less than 20% of the quality achieved by the central-
ized K-Means, making this algorithm unsuitable for large P2P
systems.

The P2P K-Means algorithm, proposed by Datta et al. [40],
is based on gossiping. Each peer performs local K-Means clus-
tering and then uses gossiping to send its centroids at all its
neighbors. It averages the centroids received from its neighbors

16

with its own centroids to produce its new centroids, and repeats
the process until the centroids do not change significantly be-
tween two iterations. The algorithm is accurate and inexpensive
for low dimensional data. However, as shown in [41], this al-
gorithm fails on clustering high-dimensional data such as text.

8. Conclusions and Outlook

In this paper we presented a hybrid DHT/super peer sys-
tem that significantly reduces network cost for maintaining a
complete inverted index. Because individually publishing all
terms of each peer’s vocabulary to the DHT is too expensive,
we group peers around super peers that are responsible for inte-
grating all information about their group’s collections, and for
publishing it to the DHT. The network gain is achieved by ex-
ploiting the term overlap at the super peers to reduce expensive
DHT lookups. Experiments with real-world datasets show a
gain of an order of magnitude over the conventional flat DHT
approach. A theoretical evaluation explains the benefits of our
approach and supports our experimental results.

The two algorithms presented in this paper differ in the way
peers build groups around super peers: the basic algorithm
groups peers randomly, whereas the clustering-enhanced al-
gorithm first partitions peers into thematically focused virtual
peers that can then be clustered more effectively, to foster group
homogeneity. Whether creating random groups of peers or us-
ing clustering algorithms for grouping, a significant term over-
lap within each group is observed. Significant network sav-
ings are observed in both algorithms, regarding both number
of messages and transfer volume. Compared to the basic al-
gorithm, clustering-enhanced PCIR increases the term overlap
in each group significantly, and thus requires even less DHT
lookups than the basic approach. Both approaches reduce the
DHT maintenance network cost without having negative effects
in the querying phase, regarding both precision/recall as well as
performance of the original DHT model.

Super peers in our PCIR approaches do not get overloaded;
the maximum workload of the super peers can be set by the su-
per peers themselves. Experiments without upper bounds show
that super peers still have less workload compared to the work-
load of regular peers in conventional DHT publishing.

Our future work will address mainly two topics, implement-
ing more accurate peer clustering, and designing advanced in-
formation retrieval techniques.

Improved Peer Clustering. We expect that an improved clus-
tering of peers to clusters will further increase term overlap and
reduce the distinct terms per cluster. Hence, we will evaluate
more complex distributed clustering algorithms and study their
execution cost in our DHT scenario.

Information retrieval techniques. The proposed PCIR cluster-
based model enables novel techniques for P2P information re-
trieval. Using intra-cluster communication, peers in a cluster
can efficiently execute information retrieval techniques that go
beyond traditional T F× IDF, which are otherwise too complex
to run in a distributed fashion. Consider for instance a two-step

query execution technique: (a) first, find a proper cluster, and
(b) second, find the right peers to query within the cluster. For
the second step, since the number of peers per cluster is limited
(as opposed to the total number of peers in the network), even
complex information retrieval infrastructures can be employed
for query evaluation within each cluster. At the same time, we
can limit the inverted index over the global DHT to include only
aggregated cluster data, and therefore reduce further the DHT
indexing cost.

References

[1] M. Mani, A.-M. Nguyen, N. Crespi, Scope: A prototype for spontaneous
p2p social networking, in: Proc. International Workshop on Communica-
tion, Collaboration and Social Networking in Pervasive Computing Envi-
ronments, 2010.

[2] M. Mani, A.-M. Nguyen, N. Crespi, What’s up 2.0: P2p spontaneous
social networking, in: IEEE INFOCOM, Poster session, 2009.

[3] G. Oster, P. Molli, S. Dumitriu, R. Mondéjar, Uniwiki: A collaborative
p2p system for distributed wiki applications, in: Fifth International Work-
shop on Collaborative Peer-to-Peer Systems, 2009.

[4] T. Luu, G. Skobeltsyn, F. Klemm, M. Puh, I. P. Žarko, M. Rajman,
K. Aberer, AlvisP2P: scalable peer-to-peer text retrieval in a structured
P2P network, Proc. VLDB Endow. 1 (2) (2008) 1424–1427.

[5] M. Bender, S. Michel, P. Triantafillou, G. Weikum, C. Zimmer, Improving
collection selection with overlap awareness in P2P search engines, in:
Proc. 28th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2005.

[6] M. Bender, S. Michel, P. Triantafillou, G. Weikum, C. Zimmer, Minerva:
Collaborative p2p search, in: VLDB, 2005, pp. 1263–1266.

[7] J. Li, B. T. Loo, J. M. Hellerstein, M. F. Kaashoek, D. R. Karger, R. Mor-
ris, On the feasibility of peer-to-peer web indexing and search, in: Proc.
Second International Workshop on Peer-to-Peer Systems (IPTPS), La
Jolla, CA, USA, 2003.

[8] B. T. Loo, R. Huebsch, I. Stoica, J. M. Hellerstein, The case for a hy-
brid P2P search infrastructure, in: Proc. Third International Workshop on
Peer-to-Peer Systems (IPTPS), La Jolla, CA, USA, 2004.

[9] R. Siebes, pNear: combining content clustering and distributed hash ta-
bles, in: Proc. Second International Workshop on Peer-to-Peer Knowl-
edge Management (P2PKM), 2005.

[10] O. Papapetrou, W. Siberski, W.-T. Balke, W. Nejdl, Dhts over peer clus-
ters for distributed information retrieval, in: Proc. 21st International Con-
ference on Advanced Information Networking and Applications (AINA),
2007, pp. 84–93.

[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan, Chord:
A scalable peer-to-peer lookup service for internet applications, SIG-
COMM Comput. Commun. Rev. 31 (4) (2001) 149–160.

[12] J. P. Callan, Z. Lu, W. B. Croft, Searching Distributed Collections with In-
ference Networks, in: Proc. 18th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, ACM
Press, Seattle, Washington, 1995.

[13] S. Michel, M. Bender, N. Ntarmos, P. Triantafillou, G. Weikum,
C. Zimmer, Discovering and exploiting keyword and attribute-value co-
occurrences to improve p2p routing indices, in: CIKM ’06: Proceedings
of the 15th ACM international conference on Information and knowl-
edge management, ACM, New York, NY, USA, 2006, pp. 172–181.
doi:http://doi.acm.org/10.1145/1183614.1183643.

[14] G. Skobeltsyn, T. Luu, I. P. Zarko, M. Rajman, K. Aberer, Query-driven
indexing for scalable peer-to-peer text retrieval, Future Generation Comp.
Syst. 25 (1) (2009) 89–99.

[15] L. Massoulie, E. L. Merrer, A.-M. Kermarrec, A. Ganesh, Peer counting
and sampling in overlay networks: random walk methods, in: Proc. 25th
annual ACM symposium on Principles of distributed computing, 2006.

[16] B. H. Bloom, Space/time trade-offs in hash coding with allowable errors,
Communications ACM 13 (7) (1970) 422–426.

[17] L. Fan, P. Cao, J. Almeida, A. Z. Broder, Summary cache: a scalable
wide-area Web cache sharing protocol, IEEE/ACM Transactions on Net-
working 8 (3) (2000) 281–293.

17

[18] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nils-
son, M. Palmr, T. Risch, EDUTELLA: A P2P Networking Infrastructure
based on RDF, in: Proc. 11th International World Wide Web Conference
(WWW2002), Hawaii, USA, 2002.

[19] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, R. Schmidt, P-Grid: A self-organizing structured P2P sys-
tem, SIGMOD Record 32 (3) (2003) 29–33.

[20] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, R. Morris, Designing
a DHT for low latency and high throughput, in: Proc. 1st Symposium on
Networked Systems Design and Implementation, 2004.

[21] L. Lee, Measures of distributional similarity, in: Proc. 27th Annual Meet-
ing of the Association for Computational Linguistics, 1999.

[22] C. Blake, A comparison of document, sentence, and term event spaces,
in: Proc. 21st International Conference on Computational Linguistics and
the 44th annual meeting of the ACL, Association for Computational Lin-
guistics, Morristown, NJ, USA, 2006.

[23] H. S. Heaps, Information Retrieval – Computational and Theoretical As-
pects, Academic Press, 1978.

[24] P. Reynolds, A. Vahdat, Efficient peer-to-peer keyword searching, in:
Middleware, Vol. 2672 of Lecture Notes in Computer Science, Springer,
2003, pp. 21–40.

[25] D. D. Lewis, Y. Yang, T. G. Rose, F. Li, RCV1: A new benchmark col-
lection for text categorization research, J. Mach. Learn. Res. 5 (2004)
361–397.

[26] Medline database, US National Library of Medicine,
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed (2006).

[27] L. Xiao, Y. Liu, L. M. Ni, Improving unstructured peer-to-peer systems
by adaptive connection establishment, IEEE Trans. Comput. 54 (9) (2005)
1091–1103.

[28] F. M. Cuenca-Acuna, C. Peery, R. P. Martin, T. D. Nguyen, PlanetP: Us-
ing gossiping to build content addressable peer-to-peer information shar-
ing communities, in: Proc. Twelfth International Symposium on High
Performance Distributed Computing (HPDC-12), 2003.

[29] W.-T. Balke, W. Nejdl, W. Siberski, U. Thaden, Progressive distributed
top-k retrieval in peer-to-peer networks, in: Proc. 21st International Con-
ference on Data Engineering (ICDE), Tokio, Japan, 2005.

[30] B. Cooper, Guiding queries to information sources with InfoBeacons,
in: Proc. ACM/IFIP/USENIX 5th International Middleware Conference,
ACM, 2004.

[31] K. Aberer, F. Klemm, M. Rajman, J. Wu, An architecture for peer-to-peer
information retrieval, in: Proc. Workshop on Peer-to-Peer Information
Retrieval, 2004.

[32] P. Ganesan, Q. Sun, H. Garcia-Molina, Adlib: A self-tuning index for
dynamic peer-to-peer systems, in: Proc. 21st International Conference on
Data Engineering, ICDE 2005, IEEE, 2005.

[33] A. Crespo, H. Garcia-Molina, Semantic overlay networks for P2P sys-
tems, in: AP2PC, 2004, pp. 1–13.

[34] L. T. Nguyen, W. G. Yee, O. Frieder, Adaptive distributed indexing for
structured peer-to-peer networks, in: J. G. Shanahan, S. Amer-Yahia,
I. Manolescu, Y. Zhang, D. A. Evans, A. Kolcz, K.-S. Choi, A. Chowd-
hury (Eds.), CIKM, ACM, 2008, pp. 1241–1250.

[35] P. Ganesan, P. K. Gummadi, H. Garcia-Molina, Canon in G major: De-
signing DHTs with hierarchical structure, in: Proceedings of the 24th
International Conference on Distributed Computing Systems (ICDCS),
Tokyo, Japan, 2004, pp. 263–272.

[36] S. Zoels, Z. Despotovic, W. Kellerer, Cost-based analysis of hierarchical
DHT design, in: Proceedings of the 6th International Conference on Peer-
to-Peer Computing, Cambridge, UK, 2006.

[37] F. Klemm, K. Aberer, Aggregation of a term vocabulary for P2P-IR: A
DHT stress test, in: DBISP2P, 2005, pp. 187–194.

[38] I. Podnar, M. Rajman, T. Luu, F. Klemm, K. Aberer, Scalable peer-to-
peer web retrieval with highly discriminative keys, in: ICDE, 2007, pp.
1096–1105.

[39] K. Hammouda, M. Kamel, HP2PC: Scalable hierarchically-distributed
peer-to-peer clustering, in: Proc. 2007 SIAM International Conference
on Data Mining (SDM07), Minneapolis, MN, USA, 2007.

[40] S. Datta, C. Giannella, H. Kargupta, K-Means clustering over a large,
dynamic network, in: Proc. SDM, 2006.

[41] O. Papapetrou, W. Siberski, F. Leitritz, W. Nejdl, Exploiting distribution
skew for scalable p2p text clustering, in: DBISP2P, 2008, pp. 1–12.

[42] L. Michael, W. Nejdl, O. Papapetrou, W. Siberski, Improving distributed

join efficiency with extended bloom filter operations, in: 21st Interna-
tional Conference on Advanced Information Networking and Applica-
tions (AINA-07), IEEE Computer Society, 2007.

A. Proofs

Proof of Theorem 4.1 We now show how the cardinality of
the intersection of two sets A and B can be derived from their
Bloom filters. Briefly, the proof proceeds as follows. We will
first estimate the number of bits that are set to true in both
Bloom filters BFA and BFB, but from a different element in each
Bloom filter. These bits are set to true due to hash collisions,
and by estimating the number of these collisions (Eqn. 8), we
can estimate the number of true bits in the Bloom filter of the
intersection of the two sets A ∩ B. From there, we can use a
theorem from [42] to estimate the number of elements in the
intersection.

To simplify exposition, we represent Bloom filters as sets of
numbers. The set representation of a Bloom filter contains value
i if and only if the ith bit of the corresponding bit array is true,
i.e., SETBF = {i : BF[i] = true}.

With BF∩ we denote the Bloom filter of the intersection of
the two sets A ∩ B. BF∧ denotes the Bloom filter produced by
a bitwise-AND merging of BFA and BFB. With R (for random)
we denote the number of bits set in BFA and BFB, therefore also
in BF∧, but not set in BF∩.

The expected value for R, denoted as R̂, is found as fol-
lows. The elements in SETBFA\SETBF∩ are independent from
the elements in SETBFB\SETBF∩ . Thus the probability of an el-
ement to occur in both SETBFA\SETBF∩ and SETBFB\SETBF∩ is
|SETBFA |−|SETBF∩ |

m−|SETBF∩ |
∗
|SETBFB |−|SETBF∩ |

m−|SETBF∩ |
, where |SETx| denotes the cardi-

nality of SETx.
When an element occurs in both SETBFA\SETBF∩ and

SETBFB\SETBF∩ it also occurs in SETBF∧ . The expected value
of R is:

R̂ = (m − |SETBF∩ |) ∗
|SETBFA |−|SETBF∩ |

m−|SETBF∩ |

∗
|SETBFB |−|SETBF∩ |

m−|SETBF∩ |

(8)

Moreover, by definition:

|SETBF∧ | = |SETBF∩ | + R (9)

By replacing R in equation 9 with the expected value we get
an estimation for |SETBF∩ |:

E(|SETBF∩ |) = |SETBF∧ | − (m − |SETBF∩ |)∗
|SETBFA |−|SETBF∩ |

m−|SETBF∩ |
∗
|SETBFB |−|SETBF∩ |

m−|SETBF∩ |

(10)

Note that BF∩ is a normal Bloom filter of the set A∩B. Thus
we can use Lemma 4.1 from [42] to estimate the number of
objects hashed into it: |SETBF∩ | = m ∗

(
1 − (1 − 1/m)kn

)
, where

n = E(|A ∩ B|). Combining that with equation 10, we get an
estimation for E(|A ∩ B|):

18

E(|A ∩ B|) =

ln(m2 − m|SETBFA | − m|SETBFB | + |SETBFA | ∗ |SETBFB |)
k ln(1 − 1/m)

−

ln(m2 − m ∗ |SETBFA | − m ∗ |SETBFB | + m ∗ |SETBF∧ |)
k ln(1 − 1/m)

(11)

Equation 2 is derived by replacing the notation of |SETBFx |

with the original notation of tb(BFx).

Proof of Theorem 4.2. We use Theorem 4.1 to estimate the ex-
pected cardinality of S x := Pi ∩ Cx and S y := Pi ∩ Cy. The ex-
pected cardinality for the two sets is denoted with f (Pi,Cx) and
f (Pi,Cy), and the true (unknown) cardinality is denoted with
|S x| and |S y|.

Without loss of generality assume that f (Pi,Cx) > f (Pi,Cy).
In such a case the objective function selects Cx as the optimal
one for peer Pi. The objective function selection is wrong when
|S y| > |S x|. We find the probability of |S y| > |S x| using Chernoff
bounds.

Pr
[
|S y| > |S x|

]
<

Pr
[
|S y| > (1 + δy) ∗ f (Pi,Cy)] ∗ Pr[|S x| < (1 − δx) ∗ f (Pi,Cx)

]
= exp(− f (Pi,Cy) ∗ δ2

y/4) ∗ exp(− f (Pi,Cx) ∗ δ2
x/2) (12)

with δy = f (Pi,Cx)/ f (Pi,Cx) ∗ (1 − δx) − 1.
Using derivation we find the values of δx and δy which

minimize the above probability: δx = −
f (Pi,Cy)− f (Pi,Cx)

2∗ f (Pi,Cy)+ f (Pi,Cx) and

δy =
2∗ f (Pi,Cx)−2∗ f (Pi,Cy)
2∗ f (Pi,Cy)+ f (Pi,Cx) . The minimized probability is then:

Prmin

[
|S y| > |S x|

]
<

exp
− f (Pi,Cy) ∗

(
2 ∗ f (Pi,Cx) − 2 ∗ f (Pi,Cy)

2 ∗ f (Pi,Cy) + f (Pi,Cx)

)2

/4
 ∗

exp
− f (Pi,Cx) ∗

(
f (Pi,Cx) − f (Pi,Cy)

2 ∗ f (Pi,Cy) + f (Pi,Cx)

)2

/2


which gives:

Prmax

[
|Pi ∩Cx| > |Pi ∩Cy|

]
> 1−

exp
− f (Pi,Cy) ∗

(
2 ∗ f (Pi,Cx) − 2 ∗ f (Pi,Cy)

2 ∗ f (Pi,Cy) + f (Pi,Cx)

)2

/4
 ∗

exp
− f (Pi,Cx) ∗

(
f (Pi,Cx) − f (Pi,Cy)

2 ∗ f (Pi,Cy) + f (Pi,Cx)

)2

/2


Proof of Theorem 5.1. In the basic PCIR approach, each peer
selects and joins exactly one peer group. Let p denote a peer,
and g a group of peers. With DC(·) we denote the document col-
lection of a peer or a group. Super peers form the document col-
lection of their group by concatenating the document collection
of all peers in the group as follows: DC(g) :=

⋃
∀peer:p∈g DC(p).

The dictionary size of the group collection follows Heap’s
law. Dg ≈ k ∗ len(DC(g))β where k and β are collection-
characteristic values. The dictionary size of a peer p ∈ g also

follows Heap’s law: Dp ≈ k ∗ len(DC(p))β. Then, the expected

ratio E
(

Dp

Dg

)
is:

E
(

Dp

Dg

)
=

k ∗ len(DC(g))β

k ∗ len(DC(p))β

Each group holds on average n/nsp peers. Thus, the average
collection length per group equals to len(DC(p) = n/nsp ∗

len(DC(p), and:

E
(

Dp

Dg

)
=

len(DC(p))β

(n/nsp ∗ len(DC(p)))β
=

(
nsp/n

)β
(13)

We simplify the cost expression for the basic PCIR approach
(Cbasic = nsp ∗ Dg ∗ (log(n) + 1)) as follows: the term nsp ∗

Dg ∗ log(n) is the dominant term in the cost equation for the
basic PCIR (Equation 5), and closely approximates the total
cost. This gives:

E
(
Cbasic

C f lat

)
≈

nsp ∗ Dg ∗ (log(n) + 1)
n ∗ Dp ∗ (log(n) + 1)

(14)

From equations 13 and 14 we get:

E
(
Cbasic

C f lat

)
≈

nsp ∗ (n/nsp)β

n
=

(
nsp/n

)1−β
(15)

19

