
Aspect Oriented Programming for a
component-based real life application: A case study

Odysseas Papapetrou and George A. Papadopoulos
Department of Computer Science

University of Cyprus
75 Kallipoleos Str., P.O.Box 20537, Nicosia, Cyprus

{cspapap,george}@cs.ucy.ac.cy

ABSTRACT
Aspect Oriented Programming, a relatively new program-
ming paradigm, earned the scientific community’s atten-
tion. The paradigm is already evaluated for traditional OOP
and component-based software development with remark-
able results. However, most of the published work, while
of excellent quality, is mostly theoretical or involves evalu-
ation of AOP for research oriented and experimental soft-
ware. Unlike the previous work, this study considers the
AOP paradigm for solving real-life problems, which can be
faced in any commercial software. We evaluate AOP in the
development of a high-performance component-based web-
crawling system, and compare the process with the develop-
ment of the same system without AOP. The results of the
case study mostly favor the aspect oriented paradigm.

Keywords
AOP, Aspect Oriented Programming, evaluation, case study

1. INTRODUCTION
Aspect Oriented Programming, a relatively new program-

ming paradigm introduced by Kiczales ([2]), recently earned
the scientific community’s attention. Having around six
years of life, the paradigm was already presented in im-
portant conferences, and recently triggered the creation of
several conferences and workshops to deal with it.

The paradigm is already evaluated for traditional OOP
and component-based software development and is found
very promising. Several evaluations consider it to be the
continuation of the OOP paradigm. However, most of the
published work while of excellent quality is mostly theoreti-
cal or involves evaluation of AOP for research oriented and
experimental software. Unlike previous works, this study
considers the AOP paradigm for solving real-life problems,
which need to be faced in any commercial software. We eval-
uated Aspect Oriented Programming in the development of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’04March 14-17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/04 ...$5.00.

a high-performance component-based web-crawling system,
and compared the process with the development of the same
system without AOP. The results of the case study, mostly
favoring the aspect oriented paradigm, are reported in this
work.

This introduction is followed by an introduction to the
AOP approach. We then describe the application that was
used for our evaluation and proceed with a description of
our evaluation scenario. We then present and comment our
evaluation results. We continue with references to similar
evaluation attempts, and, finally, we summarize the conclu-
sions from our evaluation, and report on future work.

2. ASPECT ORIENTED PROGRAMMING
Aspect Oriented Programming, as proposed by Kicza-

les ([2]), is based on the aspectual decomposition. Aspectual
decomposition is somewhat complementary to functional de-
composition, and tries to overcome the limitation of func-
tional decomposition to capture and represent crosscutting
functionality. After separating the system to functional con-
structs, aspectual decomposition is applied to the design in
order to catch the crosscutting concerns. Crosscutting func-
tionality usually includes extra-functional requirements (e.g.
timing constraints or logging facility to all the system com-
ponents). This functionality is usually replicated a number
of times, spread over the whole system. There is no sin-
gle point of reference where the developer can say that the
aspectual functionality belongs and should be implemented.

The main purpose of AOP is to capture the crosscutting
concerns throughout the system, and promote them as first-
class citizens, in order to enable the modeling and reusing of
them. The high level goals of such an approach, as reported
in various publications, follow:

1. AOP makes programming easier and faster, closer to
the human perception ([2, 3, 7]). Developers under-
stand the concept of crosscutting concerns and cross-
cutting functionality, and they use it in understanding
the whole system. However, apart from AOP, there is
no easy way to implement such a crosscutting con-
cern. With AOP, aspects are closer to the human
perception for crosscutting concerns and simplify the
design and implementation of systems with such re-
quirements. Aspects can even allow code reuse for the
extra-functional requirements they implement, which
usually crosscut the whole system. Thus, they make
system implementation easier and faster.

2. AOP makes programming less error-prone and easier
to debug and maintain ([2, 3, 7, 6]). Not only the code
becomes more modular, thus, easier to maintain and
enhance, but also the goal for debugging is more easily
gained (offered from the AOP inherent ability of au-
tomatic aspect invocation). Furthermore, AOP favors
reusability and modular representation of crosscutting
concerns, which make the code more readable and pre-
vent tangling code.

The AOP approach is already used in the implementation
of several academic-oriented systems such as [4], but there
is not much work reported on AOP relating with commercial
environment. However, we strongly believe that AOP can
enter the industrial environment, and that it has much to
offer. We expect to witness that in the near future.

3. THE HIGH PERFORMANCE
COMPONENT-BASED WEB CRAWLER

To evaluate the AOP paradigm, we chose a high perfor-
mance component-based web crawler, which would serve the
needs of our laboratory. However, it was important for us to
make the crawler easily extensible and changeable in order
to be able to reuse it in different projects. Furthermore, the
crawler should not be characterized as experimental (e.g.
unstable or with extremely complicated configuration) since
it should be reusable in a number of different projects, and
without needing to know the complete infrastructure. We
also needed the crawler to be easily adjustable to different
configurations, hardware, and network situations, because
of the variety of our hardware, as this would be desired in a
real-life application.

This application was found suitable for our AOP eval-
uation, since it was of respectable size, which would give
us the opportunity for better results. Furthermore, the
non-experimental characterization of the current applica-
tion, which is rarely the outcome in the academic environ-
ment, would ensure a more practical approach of our evalua-
tion. For the same reason, the extra-functional requirements
implemented for the evaluation, were carefully selected. It
was important for us to keep the whole implementation and,
consequently, the AOP evaluation not far from the commer-
cial field, which we feel to be the important end-user of the
programming paradigms.

Having these points in mind, we decided to use the fol-
lowing design, comprising three basic multi-threaded com-
ponents: (i) the database component, (ii) the crawling com-
ponent, and (iii) the processing component.

Figure 1: The architecture of a high-performance
component-based web-crawling system.

The database component was responsible for two tasks:
(a) updating the database with the processed information,

received from the processing component, and (b) feeding the
crawling component with the necessary URLs to be crawled.
Furthermore, as in all the components, a number of threads
were running in parallel in each component, so that the fast
devices like CPU and memory (as opposed to the usually
slow devices like I/O and network) would be more efficiently
utilized. The number of threads running in parallel in each
component could be selected from the user, and also ad-
justed dynamically from each component for optimal per-
formance. Selecting a very small number of threads, the
user would let fast resources like processor and the memory
rather unutilized, while selecting an overly large number of
threads would result to large context switching overhead.

The crawling component’s responsibility was to download
the URLs from the web and provide the processing com-
ponent with the page information for further processing.
Page information included the page’s URL, IP address, and
page text. Again, the crawling component ran a number of
threads to maximize resource utilization.

Finally, the processing component was responsible for re-
ceiving the page information from the crawling component
and processing it, and passing the results to the database
component for permanent storage. As in the other compo-
nents, this component was also multi-threaded, thus utiliz-
ing the resources better.

4. EVALUATION SCENARIO
To evaluate AOP in the crawling project, we ran the fol-

lowing scenario: First, we set our metrics for the evaluation
of AOP, trying to keep them as objective as possible; then,
we designed the component-based web crawler and located
the different functionalities that could be modeled as as-
pects. Following that, we implemented and tested the three
components independently. The implementation up to that
point did not include any of the functionalities identified as
aspects in the earlier step. Finally, we tried to integrate the
three components, and also include the extra functionality,
implemented with and without AOP.

Our selection for the metrics was mostly to favor (as much
as possible) objective results. Our goal, as Murphy in [5]
suggests, was to answer two important questions: (a) if AOP
makes it easier to develop and change a certain category of
software (usefulness), and (b) what is the effect of AOP in
the software development (usability). For these reasons, we
selected the following metrics:

1. We measure effectiveness of AOP for implementing the
extra functionality, compared to traditional OOP.

2. We measure the learning curve of AOP methodology.

3. We measure time that took to complete the project
with the two approaches, AOP and traditional OOP.

4. We measure complete lines of code for the added func-
tionality with AOP and with traditional OOP.

5. We compare code tangling in the AOP and the tradi-
tional OOP model.

6. We report on the stability of the AOP model for cre-
ating component-based software.

The types of functionality that we identified as being best
modeled as aspects were the following ones:

Logging : This functionality requires saving extended pro-
gram execution trace to a file or printing it to the
screen. The trace should include entrance and exit
messages from the methods, exceptions thrown, and
time of each event.

Overloading checks : Since the crawling function is ex-
pensive in resources, we must constantly check for over-
loading in any of the resources, in order to avoid driv-
ing the machines to collapse. The two resources we
had to monitor were the DNS server that was serv-
ing our crawler and the machine that was hosting our
crawling database.

Database optimizer : Even with the combination of the
expensive high performance hardware and software that
was used for the database server, we still needed to
follow some optimization techniques to minimize the
need for database connectivity. This was due to the
heavy load that our database server experienced from
the crawling function.

The Logging aspect, the most common aspect in AOP,
was mostly to help debugging during the developing stage
of the application, but it would also be used for identify-
ing bottlenecks (profiling) and performing optimizations to
the components in a later stage. When the logging aspect
was enabled, entering or exiting a method would print (to
stderr) the method’s name, the exact time, and some other
useful information. Moreover, a method throwing an excep-
tion would result in invoking the logging aspect to print the
exception with the method’s name in stderr.

The overloading checks were broken in two aspects, the
DNS monitoring aspect and the database monitoring as-
pect. The DNS monitoring aspect was trying to adjust the
number of active downloading threads according to the DNS
server status. More to the point, the problem we faced was
that the DNS server that was serving our crawler was shared
with other machines, some of them running experimental
software, doing extensive use of the DNS server for DNS
resolution. This practically meant that the efficiency of the
DNS server was dependent of the number of software clients
using it in parallel. Running more than the appropriate (for
each moment) downloading threads in our crawler (that were
doing the DNS resolution) resulted in more DNS resolution
requests that our DNS server could handle, and eventually,
collapsing of our DNS server. On the other hand, underesti-
mating our DNS server’s abilities in low-usage hours would
result in significantly lower crawling speed. For these rea-
sons we constructed and used the DNS monitoring aspect,
which would adjust the number of the downloading threads
according to the running DNS load. Each DNS resolution
was timed, and when discovering latency higher than ex-
pected, we were temporarily pausing some of the download-
ing threads (the pause time and the number of the threads
that we were pausing were analogous to the latency), thus,
causing less DNS lookups in a specific time.

The database monitoring aspect’s goal was to disable over-
loading in the database machine. A similar approach to
the DNS monitoring aspect was used. We were monitor-
ing the responses from our database server and when we
were detecting overloading of the database we would pause
some of the downloading threads. The reason that we could
not predict the ideal number for the database component

threads from the beginning was because of the variety of
the web-pages. For example, a web-page with many new
words (words that are for first time parsed from the crawler)
would result in much database load, while words that are
seen before from the crawler would result in much less (due
to some optimizations, similar to those proposed in [1]).
For these reasons, we constructed the database monitoring
aspect to monitor database queries. The aspect would time
every interaction with the database server and try to detect
overloading. When the time demanded for the query was
bigger than a threshold (all the queries we were executing
were having the same average time for execution in normal
circumstances), we would pause some of the downloading
threads for some time, in order to allow the database server
to complete its work without extra work added at the same
time. Later on, the downloading threads would resume their
work.

These two last aspects would not contradict each other,
since they were both doing the same action, pausing some of
the downloading threads. However, the pause time and the
number of the downloading threads to pause were not the
same in the two cases. Each of the aspects was calculating
the time and the number of threads to pause with a different
algorithm.

Finally, we also constructed the database optimizer as-
pect which acted as a database cache and released some of
the database load. More specifically, for the parsing func-
tion we were making heavy usage of the crawling dictionary
table from the database. That dictionary was matching ev-
ery word we found up to the moment with its id number.
The choice was to avoid needless and costly replication of
data and enable saving the page text as numbers (smaller
in storing size and faster in seeking). By keeping a mem-
ory cache of that table as in Brin’s implementation ([1]), we
would manage to get important workload off the database
server and speed things up. More to the point, prior ad-
dressing the database for a word’s serial number, we were
querying an indexed structure in the local memory. If the
query failed, we were then inserting the word in the database
and in the RAM dictionary and continuing our work. This
minimized the database interactions and boosted the com-
plete process, since RAM access was enormously faster than
access to the database. Processing English language pages
with an average-size dictionary of 1 million words would re-
sult to around 99,9% success from the RAM table, thus, it
would prevent querying the database very efficiently.

5. EVALUATION RESULTS
As already mentioned, these four aspects were implemented

in two distinct ways: (a) injected in the program code, using
standard OOP approach, and (b) modeled and implemented
as aspects. The two versions were then compared and eval-
uated in the described metrics. The results from the evalu-
ation were mostly in favor of the AOP methodology. While
the developers were not long experienced in AOP, the new
model boosted the implementation speed and helped in more
modular software.

Regarding effectiveness of the AOP approach compared
to the traditional OOP approach, the two approaches were
the same. We managed to add the extra functionality in
both versions of the software (however, it was not always
trivial to do so). In short, for the presented aspects there
was always an AOP-oriented and an OOP-oriented solution

available, and there was not a noticeable performance dif-
ference between the two.

Regarding the time demanded to learn the AOP method-
ology, this was not significant. Both the developers that
were working on the project were very experienced with
OOP, but did not have previous practical experience with
AOP. Fortunately for the project, they were able to learn
AOP sufficiently without tutoring using only publicly avail-
able online sources in a single week. There was also another
short overhead of one day for installing and getting famil-
iar to an AOP-aware IDE (we used Eclipse with the AOP
modules).

The complete time that was required to finish the crawler
was shorter in the AOP version (this time did not include the
time spent for learning AOP however). Both the versions
used the same core already developed (the three compo-
nents demonstrated earlier) but they were continued com-
pletely independently, without reusing knowledge or code
from one version to the other (the nature of the two ver-
sions prohibited reusing knowledge or code anyway). The
time demanded for completing the crawler with the aspects
in the AOP version was 7 man-hours, while the OOP ver-
sion demanded 10 man-hours in order to design and de-
velop the code. Most of this time, in the case of the OOP
version, was needed for locating the methods and putting
the necessary code to them. For implementing the logging
functionality for instance, in the OOP version there were
73 such methods counted, while AOP did not demand this
task since the pointcuts were found automatically from the
aspect definition. It was the developers’ feeling that most of
the man-hours spent in the OOP version of the crawler were
wasted, because they were repeating trivial code in the ap-
plication. Furthermore, as they said, the result in the OOP
case was not satisfactory for them since, if they needed to
change something in an aspect, they should relocate the as-
pect code from the beginning and this would be difficult to
be done.

We also measured the number of lines we needed to add
in the two approaches to implement the extra functionality.
For the logging aspect with the AOP approach, we needed
less than 20 lines in one single file, while the same function-
ality for the traditional OOP version required 126 lines of
code spread in eight different files (the number of lines for
the AOP code also include the pointcuts definitions and the
java include directives). This, apart from a time-demanding
approach, also reveals important code tangling since we had
to modify eight classes for a simple logging requirement.

The other two aspects, the DNS monitoring and the database
monitoring aspect, needed roughly the same number of lines
for the two versions. To implement both the DNS monitor-
ing and the database monitoring functionality, we needed
around 30 lines for the pure OOP solution: (a) four lines
for timing the DNS or the database query, (b) ten lines for
checking for overloading, and proceeding in alternate behav-
ior if overloading occurs, and finally (c) one line for invok-
ing the check wherever needed. In the AOP solution, we
were able to join the two concerns in a single aspect - some-
thing that we were unable to do in the OOP version - and
reuse some of the code. The AOP version of the solution
demanded roughly the same number of lines, around forty
for both the concerns (the additional code was because of
aspect and advice headers and the pointcuts definition).

Finally, the database optimizer needed the same number

of lines in the two versions, that is forty lines. These lines
in the OOP version were split in three different places in
the original database component file, while at the AOP ap-
proach the original file was kept intact and all the new code
was in a single aspect-definition file.

We also tried to capture the code tangling that occurs in
the two versions, after the extra functionality is added. To
do that, we found the distribution of the added code in the
eight affected files. The OOP version of the logging aspect,
as expected, was spread in all the eight files in seventy-three
different places. The OOP version of the DNS monitoring
aspect resulted in addition of code in one file only, the down-
loader component file, in three different places. Similarly,
the OOP version of the database monitoring aspect resulted
in addition of code in the database component file, in three
different places. Finally, the database optimizer aspect im-
plementation, without AOP, also resulted in code addition
in three different places (again, in the database component
file).

On the other hand, implementation of the four aspects
with the AOP approach, as expected, created no code tan-
gling. The complete code for the extra functionalities was
included in the three (instead of four, since the DNS and the
database monitoring concerns were implemented as a single
aspect) aspect files. For the case of the database optimizer,
this offered us another important advantage since we often
needed to disable the database optimizer due to hardware
(memory) limitations in weaker machines. While we did
not take any provision for that, the AOP version, unlike
the OOP version, enabled removal of the optimizer without
changing any code. In the OOP version, the developer had
to remove or modify some of the original code.

Table 1 summarizes the results for the code size and code
tangling for the four aspects:

Finally, the implementation of AOP we used, combined
with the IDE tool, were stable and did not cause us any un-
expected problems (such as bugs in the compiler). While the
crawling system was not extremely big, it did make exten-
sive use of the machines’ resources, and AspectJ compiled
files did not face any trouble with that. AspectJ compiled
files proved to work fine under pressure with the standard
virtual machine, and aspects introduction was not causing
a noticeable overhead to the machines.

6. RELATED WORK
Several publications try to evaluate AOP. Almost all of

them report results similar to ours. However, while of ex-
cellent quality, most of the previous work we are aware of
follow a theoretical approach or limit their hands-on evalu-
ation for academic or experimental software. We will now
briefly comment on some of them.

Walker in [8] constructs several experiments and a case-
study to evaluate AOP. The outcome of the evaluation is
that AOP can help faster software development (program-
ming, debugging, etc.) under certain conditions, while other
cases make development of AOP less attractive. While of su-
perb quality and significant importance, this work is limited
to the evaluation of AOP based on a preliminary version
of AspectJ, version 0.1. Since then, AOP and especially
AspectJ, changed significantly confronting most of the lim-
itations detected in the evaluation, and also powering the
users with more functionalities. Furthermore, CASE tools
and powerful IDE environments were developed to assist the

Aspect # Lines of code # Places to add # Files to add
OOP AOP OOP AOP OOP AOP

Logging 126 19 73 1 8 1
DNS Monitoring 15 40 3 1 1 1

Database Monitoring 15 3 1
Database optimizer 45 45 3 1 1 1

Table 1: Size of added code and code tangling for implementation of the aspects. The two aspects, DNS and
Database monitoring were easily joined to a single aspect in the AOP version

developers in the process.
Mendhekar in [4] also presents a case study, evaluating

AOP in an image processing application. Although AOP
was then still in infancy, this case study presents results very
similar to ours. However, Mendhekar, being in Xerox labs
where AOP was born, follows a more research-oriented ap-
proach during the evaluation. The evaluation uses an AOP
implementation that cannot easily be used from people out-
side the Xerox environment. Also, being interested in per-
formance, this work does not elaborate on various other im-
portant measures, such as the learning curve and the time
that took the developer to complete.

Several other important publications ([2, 3, 7, 6]) evaluate
AOP from mostly a theoretical approach. Most of them also
report results that favor AOP programming. Some of their
results are reported in section 3 of this report.

7. CONCLUSIONS
During the construction of the component-based high-

performance web crawler, we had the opportunity to evalu-
ate the relatively new aspect oriented paradigm for building
component-based systems. Having defined our extra func-
tionality, we implemented and compared the two versions of
the web crawler, the AOP and the OOP one. For the re-
quired extra functionality, both the paradigms proved able
to implement a correct solution. The quantity of code (num-
ber of lines) that the developer needed to implement in the
two versions was not of much difference, with the only ex-
ception of the logging aspect where the OOP implementa-
tion was much larger than the AOP one. Furthermore, in
both the versions of the application there was no apparent
performance difference. Both the versions were stable, even
when working under high load and in varying system en-
vironments. The significant difference however between the
two implementations was in the time required to develop and
debug each of them, and the quality of the produced code.
The AOP approach not only completed the system faster,
but it also produced modular high quality code, while the
traditional approach was creating the well-known spaghetti
code. More specifically, the AOP version was having all
the extra functionality apart of the code implementing the
standard functional requirements. This not only kept the
original components reusable in different implementations,
but also prevented tangling the code, thus, making future
maintenance easier. Furthermore, this enabled us to easily
enable and disable the extra functionality, depending on the
hardware resources available and on our requirements.

Concluding, we have to report that the AOP model in gen-
eral appears to favor the development of quality component-
based software. The AOP model itself is able to boost the
implementation speed without negatively affecting quality
of the software. Moreover, the learning time of the model,

judging from our experience, is not long. While not hav-
ing much experience of AOP implementation languages, we
were able to produce AOP-based code in no time. Finally,
while AOP cannot offer any solution to problems unsolv-
able from traditional approaches, and while AOP does not
always target to less code, it can offer better and easier so-
lutions to programs that are otherwise difficult to be imple-
mented. Therefore, we can safely arrive to the conclusion
that AOP has much to offer in component-based software
development. We strongly believe that integration of AOP
with component-based software is going to be the target of
important research attempts in the near future and can pro-
duce some very interesting results, and we await for the in-
troduction of AOP software in commercial component-based
software products.

8. REFERENCES
[1] S. Brin and L. Page. The anatomy of a large-scale

hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1–7):107–117, 1998.

[2] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of the
European Conference on Object-Oriented Programming
(ECOOP), LNCS 1241, pages 220–242,
Springer-Verlag, 1997.

[3] C. Lopes. D: A Language Framework for Distributed
Programming. PhD thesis, College of Computer
Science, Northeastern University, November 1997.

[4] A. Mendhekar, G. Kiczales, and J. Lamping. RG: A
case-study for aspect-oriented programming. Technical
Report SPL97-009 P9710044, Xerox Palo Alto Research
Center, Palo Alto, CA, USA, February 1997.

[5] G. C. Murphy, R. J. Walker, and E. L. Baniassad.
Evaluating emerging software development
technologies: Lessons learned from assessing
aspect-oriented programming. Technical Report
TR-98-10, Department of Computer Science, University
of British Columbia, 1998.

[6] A. Navasa, M. A. Perez, J. Murillo, and J. Hernandez.
Aspect oriented software architecture: a structural
perspective. In Proceedings of the Aspect-Oriented
Software Development, 2002, The Netherlands.

[7] D. Shukla, S. Fell, and C. Sells. Aspect-oriented
programming enables better code encapsulation and
reuse. MSDN Magazine,
http://msdn.microsoft.com/msdnmag/, March 2002.

[8] R. J. Walker, E. L. A. Baniassad, and G. C. Murphy.
An initial assessment of aspect-oriented programming.
Technical Report TR-98-12, Department of Computer
Science, University of British Columbia, Sept. 1998.

