
Fachrichtung 6.2 – Informatik
Naturwissenschaftlich-Technische Fakultät I
Universität des Saarlandes

Max-Planck-Institut für Informatik, Saarbrücken
AG 5 Databases and Information Systems Group
Prof. Dr.-Ing. Gerhard Weikum

On the Usage of Global Document

Occurrences in Peer-to-Peer Information

Systems

Odysseas Papapetrou

Master thesis in Computer Science at the University of Saarland,
Saarbrücken

October 2005

I hereby certify that the work contained in this Master thesis is my own work,
unless explicitly mentioned and cited.

Odysseas Papapetrou
Saarbrücken, October 2005

Acknowledgments
I would like to thank Prof. Dr. Gerhard Weikum, for his guidance in the comple-
tion of this research. Special thanks belong to my tutors, Sebastian Michel and
Matthias Bender. Working with them was a wonderful experience. Furthermore,
I would like to thank Kerstin Meyer Ross, the IMPRS coordinator, as well as
the IMPRS institution, providing me the stipend for my M.Sc. degree. Last, but
not least I would like to thank my wife, Katerina Ioannou, for the moral support
and advices.

Note: A preliminary version of this work is submitted for publication in the
proceedings of the 7th International Conference on Cooperative Information
Systems (CoopIS’05). The work is co-authored with Sebastian Michel, Matthias
Bender and Prof. Dr. Gerhard Weikum.

On the Usage of Global Document Occurrences
in Peer-to-Peer Information Systems

Summary

There exist a number of approaches for query processing in Peer-to-Peer in-
formation systems that efficiently retrieve relevant information from distributed
peers. However, very few of them take into consideration the overlap between
peers. As the most popular resources (e.g., documents or files) are often present
at most of the peers, a large fraction of the documents eventually received by
the query initiator are duplicates.

In this work we develop a technique based on the notion of global document
occurrences (GDO), that, when processing a query, penalizes frequent documents
increasingly as more and more peers contribute their local results. We argue that
the additional effort to create and maintain the GDO information is reasonably
low, as the necessary information can be piggybacked onto the existing commu-
nication. Our experiments indicate that our approach significantly decreases the
number of peers that have to be involved in a query to reach a certain level of
recall and, thus, decreases user-perceived latency and the wastage of network
resources.

1 Introduction

The peer-to-peer (P2P) approach, which has become popular in the context of
file-sharing systems such as Gnutella or KaZaA, allows handling huge amounts
of data in a distributed and self-organizing way. In such a system, all peers are
equal and all of the functionality is shared among all peers so that there is no
single point of failure and the load is evenly balanced across a large number of
peers. These characteristics offer enormous potential benefits for search capabil-
ities in terms of scalability, efficiency, and resilience to failures and dynamics.
Additionally, such a search engine can potentially benefit from the intellectual
input (e.g., bookmarks, query logs, etc.) of a large user community.

One of the key difficulties, however, is to efficiently select promising peers for
a particular information need. While there exist a number of strategies to tackle
this problem, most of them ignore the fact that popular documents are typi-
cally present at a reasonable fraction of peers. In fact, experiments show that
often promising peers are selected because they share the same high-quality
documents. For instance, consider a query for all songs by a famous artist like
Madonna. If, as in many of today’s systems, every selected peer contributes its
best matches only, you will most likely end up with many duplicates of popular
and recent songs, when instead you would have been interested in a bigger variety
of songs. The same scenario holds true in an information retrieval context where
returning only the k best matches for a query is even more common. Popular
documents then are uselessly contributed as query results by each selected peer,
wasting precious local resources and disqualifying other relevant documents that
eventually might not be returned at all. The size of the combined result eventu-
ally presented to the query initiator (after eliminating those duplicates), thus,
is unnecessarily small.

We propose a technique based on the notion of Global Document Occurrences
(GDO) that, when processing a query, penalizes frequent documents increasingly
as more and more peers contribute their local results. The same approach can
also be used prior to the query execution, when selecting promising peers for a
query. We discuss the additional effort to create and maintain the GDO infor-
mation and present early experiments indicating that our approach significantly
decreases the number of peers that have to be involved in a query to reach a
certain level of recall. Thus, taking overlap into account when performing query
routing is a great step towards the feasibility of distributed P2P search.

This introduction is followed by an overview of related research in the dif-
ferent fields that we touch with our work. Section 3 gives a short introduction
on Information Retrieval basics necessary for the remainder of this paper. Sec-
tion 4 presents the architecture of MINERVA, our distributed P2P search engine
that was used for our experiments. Section 5 introduces the notion of GDO and
discusses its application at several stages of the querying process. Section 6 illus-
trates a number of experiments to show the potential of our approach. Section 7
concludes and briefly discusses future research directions.

1

2 Related work

Recent research on P2P systems, such as Chord [1], CAN [2], Pastry [3], P2P-Net
[4], or P-Grid [5] is based on various forms of distributed hash tables (DHTs)
and supports mappings from keys, e.g., titles or authors, to locations in a de-
centralized manner such that routing scales well with the number of peers in
the system. Typically, in a network of n nodes, an exact-match key lookup can
be routed to the proper peer(s) in at most O(log n) hops, and no peer needs to
maintain more than O(log n) routing information. These architectures can also
cope well with failures and the high dynamics of a P2P system as peers join or
leave the system at a high rate and in an unpredictable manner. However, the
approaches are limited to exact-match, single keyword queries on keys. This is
insufficient when queries should return a ranked result list of the most relevant
approximate matches [6].

In recent years, many approaches have been proposed for collection selection
in distributed IR, among the most prominent the decision-theoretic framework
by [7], the GlOSS method presented in [8], and approaches based on statistical
language models [9, 10]. [11] gives an overview of algorithms for distributed IR
style result merging and database content discovery. [7] presents a formal decision
model for database selection in networked IR. [12] investigates different quality
measures for database selection. [13, 14] study scalability issues for a distributed
term index. None of the presented techniques incorporates overlap detection into
the selection process.

[15] describes a permutation-based technique for efficiently estimating set
similarities for informed content delivery. [16] proposes a hash-based synopsis
data structure and algorithms to support low-error and high-confident estimates
for general set expressions. Bloom [17] describes a data structure for compactly
representing a set in order to support membership queries. [18] proposes com-
pressed Bloom filters that improve performance in a distributed environment
where network bandwidth is an issue.

[19] describes the use of statistics in ranking data sources with respect to
a query. They use probabilistic measures to model overlap and coverage of the
mediated data sources, but do not mention how to acquire these statistics. In
contrast, in an earlier work [20] we assume these statistics being generated by the
participating peers (based on their local collections) and present a DHT based
infrastructure to make these statistics globally available.

[21] considers novelty and redundancy detection in a centralized, document-
stream based information filtering system. Although the technique presented
seems to be applicable in a distributed environment for filtering the documents
at the querying peer, it is not obvious where to get these documents from. In
a large-scale system, it seems impossible to query all peers and to process the
documents.

[22, 23] also worked on overlap statistics in the context of collection selection.
They present a technique to estimate coverage and overlap statistics by query
classification and data mining and use a probing technique to extract features
from the collections. Expecting that data mining techniques will be very heavy

2

for the envisioned, highly-dynamic application environment, we adopt a different
philosophy.

In a prior work [24] we propose a Bloom filter based technique to estimate
the mutual collection overlap. While there we use Bloom filters to estimate the
mutual overlap between peers, we now use the number of global document oc-
currences of the documents in a collection to estimate the contribution of this
collection to a particular query. These approaches can be seen as orthogonal and
can eventually be combined to form even more powerful systems.

3 Information Retrieval Basics

Information Retrieval (IR) systems keep large amounts of unstructured or weakly
structured data, such as text documents or HTML pages, and offer search func-
tionalities for delivering documents relevant to a query. Typical examples of
IR systems include web search engines or digital libraries; in the recent past,
relational database systems are integrating IR functionality as well.

The search functionality is typically accomplished by introducing measures
of similarity between the query and the documents. For text-based IR with key-
word queries, the similarity function typically takes into account the number of
occurrences and relative positions of each query term in a document. Section 3.1
explains the concept of inverted index lists that support an efficient query exe-
cution and section 3.2 introduces one of the most popular similarity measures,
the so-called TF*IDF measure. For further reading, we refer the reader to [6,
25].

3.1 Inverted Index Lists

The concept of inverted index lists has been developed in order to efficiently
identify those documents in the dataset that contain a specific query term. For
this purpose, all terms that appear in the collection form a tree-like index struc-
ture (often a b+-tree or a trie) where the leafs contain a list of unique document
identifiers for all documents that contain this term (Figure 1). Conceptually,
these lists are combined by intersection or union for all query terms to find
candidate documents for a specific query. Depending on the exact query execu-
tion strategy, the lists of document identifiers may be ordered according to the
document identifiers or according to a score value to allow efficient pruning.

3.2 TF ∗ IDF Measure

The number of occurrences of a term t in a document d is called term fre-
quency and typically denoted as tf t,d. Intuitively, the significance of a document
increases with the number of occurrences of a query term. The number of docu-
ments in a collection that contain a term t is called document frequency (dft); the
inverse document frequency (idf t) is defined as the inverse of df t. Intuitively, the
relative importance of a query term decreases as the number of documents that

3

database

B+ tree on terms

17: 0.3
44: 0.4

...

selection... ...

52: 0.1
53: 0.8
55: 0.6

12: 0.5
14: 0.4

...

28: 0.1
44: 0.2
51: 0.6
52: 0.3

17: 0.1
28: 0.7

...

17: 0.3
17: 0.144: 0.4

44: 0.2

11: 0.6

index lists with
(DocId: tf*idf)
sorted by DocId

algorithm

Fig. 1. B+ Tree of Inverted Index Lists

contain this term increases, i.e., the term offers less differentiation between the
documents. In practice, these two measures may be normalized (e.g., to values
between 0 and 1) and dampened using logarithms. A typical representative of
this family of tf ∗ idf formulas that calculates the weight wi,f of the i-th term
in the j-th document is

wi,j :=
tfi,j

maxt{tft,j}
∗ log(

N

dfi
)

where N is the total number of documents in the collection.
In recent years, other relevance measures based on statistical language mod-

els and probabilistic IR have received wide attention [7, 26]. For simplicity and
because our focus is on P2P distributed search, we use the still most popular
tf ∗ idf scoring family in this paper.

4 MINERVA

We briefly introduce MINERVA1, a fully operational distributed search engine
that we have implemented and that serves as a valuable testbed for our work[20,
27]. We assume a P2P collaboration in which every peer is autonomous and has
a local index that can be built from the peer’s own crawls or imported from
external sources and tailored to the user’s thematic interest profile. The index
contains inverted lists with URLs for Web pages that contain specific keywords.

A conceptually global but physically distributed directory, which is layered
on top of a Chord-style Dynamic Hash Table (DHT), holds compact, aggre-
gated information about the peers’ local indexes and only to the extent that
the individual peers are willing to disclose. We only use the most basic DHT
functionality, lookup(key), that returns the peer currently responsible for key.
Doing so, we partition the term space, such that every peer is responsible for
a randomized subset of terms within the global directory. For failure resilience
and availability, the entry for a term may be replicated across multiple peers.

Directory maintenance, query routing, and query execution work as follows
(cf. Figure 2). In a preliminary step (step 0), every peer publishes a summary
1 Project homepage available at http://www.minerva-project.org

4

(Post) about every term in its local index to the directory. A hash function
is applied to the term in order to determine the peer currently responsible for
this term. This peer maintains a PeerList of all postings for this term from
peers across the network. Posts contain contact information about the peer who
posted this summary together with statistics to calculate IR-style measures for
a term (e.g., the size of the inverted list for the term, the maximum average
score among the term’s inverted list entries, or some other statistical measure).
These statistics are used to support the query routing process, i.e., determining
the most promising peers for a particular query.

Fig. 2. MINERVA System Architecture

The querying process for a multi-term query proceeds as follows: a query is
executed locally using the peer’s local index. If the result is considered unsatis-
factory by the user, the querying peer retrieves a list of potentially useful peers
by issuing a PeerList request for each query term to the underlying overlay-
network directory (step 1). Using database selection methods from distributed
IR and metasearch [11], a number of promising peers for the complete query is
computed from these PeerLists. This step is referred to as query routing. Subse-
quently, the query is forwarded to these peers and executed based on their local
indexes (query execution; step 2). Note that this communication is done in a
pairwise point-to-point manner between the peers, allowing for efficient commu-
nication and limiting the load on the global directory. Finally, the results from
the various peers are combined at the querying peer into a single result list.

The goal of finding high-quality search results with respect to precision and
recall cannot be easily reconciled with the design goal of unlimited scalability,
as the best information retrieval techniques for query execution rely on large
amounts of document metadata. Posting only compact, aggregated information
about local indexes and using appropriate query routing methods to limit the
number of peers involved in a query keeps the size of the global directory man-
ageable and reduces network traffic, while at the same time allowing the query
execution itself to rely on comprehensive local index data. We expect this ap-

5

proach to scale very well as more and more peers jointly maintain the moderately
growing global directory.

The approach can easily be extended in a way that multiple distributed
directories are created to store information beyond local index summaries, such
as information about local bookmarks, information about relevance assessments
(e.g., derived from peer-specific query logs or click streams), or explicit user
feedback. This information could be leveraged when executing a query to further
enhance result quality.

4.1 Query Routing

Database selection has been a research topic for many years, e.g. in distributed
IR and metasearch [11]. Typically, the expected result quality of a collection is
estimated using precomputed statistics, and the collections are ranked accord-
ingly. Most of these approaches, however, are not directly applicable in a true
P2P environment, as

• the number of peers in the system is substantially higher (10x peers as op-
posed to 10-20 databases)

• the system evolves dynamically, i.e. peers enter or leave the system au-
tonomously at their own discretion at a potentially high rate

• the results from remote peers should not only be of high quality, but also
complementary to the results previously obtained from one’s local search
engine or other remote peers

In [20, 28], we have adopted a number of popular existing approaches to fit
the requirements of such an environment and conducted extensive experiments
in order to evaluate the performance of these naive approaches.

As a second step, we have extended these strategies using estimators of mu-
tual overlap among collections [24] using bloom filters [17]. Preliminary experi-
ments show that such a combination can outperform popular approaches based
on quality estimation only, such as CORI [11].

We also want to incorporate the fact that every peer has its own local index,
e.g., by using implicit-feedback techniques for automated query expansion (e.g.,
using the well-known IR technique of pseudo relevance feedback [29] or other
techniques based on query logs [30] and click streams [31]). For this purpose, we
can benefit from the fact that each peer executes the query locally first, and also
the fact that each peer represents an actual user with personal preferences and
interests. For example, we want to incorporate local user bookmarks into our
query routing [28], as bookmarks represent strong recommendations for specific
documents. Queries could be exclusively forwarded to thematically related peers
with similarly interested users, to improve the chances of finding subjectively
relevant pages.

Ultimately, we want to introduce a sophisticated benefit/cost ratio when se-
lecting remote peers for query forwarding. For the benefit estimation, it is intu-
itive to consider such measures as described in this section. Defining a meaningful

6

cost measure, however, is an even more challenging issue. While there are tech-
niques for observing and inferring network bandwidth or other infrastructural
information, expected response times (depending on the current system load) are
changing over time. One approach is to create a distributed Quality-of-Service
directory that, for example, holds moving averages of recent peer response times.

4.2 Query Execution

Query execution based on local index lists has been an intensive field of research
for many years in information retrieval. A good algorithm should avoid reading
inverted index lists completely, but limit the effort to O(k) where k is the number
of desired results. In the IR and multimedia-search literature, various algorithms
have been proposed to accomplish this. The best known general-purpose method
for top-k queries is Fagin’s threshold algorithm (TA) [32], which has been in-
dependently proposed also by Nepal et al. [33] and Güntzer et al. [34]. It uses
index lists that are sorted in descending order of term scores under the additional
assumption that the final score for a document is calculated using a monotone
aggregation function (such as a simple sum function). TA traverses all inverted
index lists in a round-robin manner, i.e., lists are mainly traversed using sorted
accesses. For every new document d encountered, TA uses random accesses to
calculate the final score for d and keeps this information a in document candi-
date set. Since TA additionally keeps track of a higher bound for documents not
yet encountered, the algorithm terminates as soon as this bound assures that no
unseen document can enter the candidate set. Probabilistic methods have been
studied in [35] that can further improve the efficiency of index processing.

As our focus is on the distributed aspect of query processing, we will not
focus on query execution in this paper. Our approaches to be introduced in the
upcoming sections are orthogonal to this issue and can be applied to virtually
any query execution strategy.

5 Global Document Occurrences (GDO)

We define the global document occurrence of a document d (GDO(d) for short)
as the number of peers that contain d, i.e., as the number of occurrences of
d within the network. This is substantially different from the notion of global
document frequency of a term t (which is the number of documents that contain
t) and from the notion of collection frequency (which is typically defined as the
number of collections that contain documents that contain t).

The intuition behind using GDO when processing a query is the fact that
GDO can be used to efficiently estimate the probability that a peer contains a
certain document and, thus, the probability that a document is contained in at
least one of a set of peers. Please note the obvious similarity to the TF ∗ IDF
measure, which weights the relative importance of a query term t using the
number of documents that contain t as an estimation of the popularity of t,
favoring rare terms over popular (and, thus, less distinctive and discriminative)

7

terms. Similarly, the GDO approach weights the relative popularity of a docu-
ment within the union of all collections. If a document is highly popular (i.e.,
occurs in most of the peers), it is considered less important both when selecting
promising peers (query routing) and when locally executing the query (query
execution). In contrast, rare documents receive a higher relative importance.

5.1 Mathematical Reasoning

The proposed approach will get clearer if we describe the reasoning behind
it. Suppose that we are running a single-keyword query, and that each docu-
ment d in our collection has a precomputed relevance to a term t (noted as
DocumentScore(d, t)). When searching for the top-k documents, a P2P system
would ask some of its peers for documents, which determine the relevant docu-
ments locally, and merge the results.

This independent document selection has the disadvantage that it does not
consider overlapping results. For example, one relevant document might be so
common, that every peer returns it as result. This reduces the recall for a query,
as the document is redundant for all but the first peer. In fact, massive document
replication is common in real P2P systems, so duplicate results frequently occur.
This effect can be described with a mathematical model, which can be used to
improve document retrieval.

Assuming a uniform distribution of documents among the peers, the proba-
bility that a given peer has a certain document d can be estimated by

PH(d) =
GDO(d)
#peers

.

Now consider a sequence of peers < p1, . . . , pλ >. The probability that a given
document d held by pλ is fresh, i.e. not already occurs in one of the previous
peers, can be estimated by

Pλ
F (d) = (1− PH(d))λ−1.

This probability can now be used to re-evaluate the relevance of documents:
If it is likely that a previously queried peer has already returned a document,
the document is no longer relevant. Note that we introduce a slight inaccuracy
here; we only used the probability that one of the previously asked peers has a
document, not the probability that it has also returned the document. Thus we
would be interested in the probability that a document has not been returned
before Pλ

NR(d). However the error introduced is reasonably small: for all docu-
ments Pλ

NR(d) ≥ Pλ
F (d). For the relevant documents Pλ

NR(d) ≈ Pλ
F (d), as the

relevant documents will be returned by the peers. Therefore we only underesti-
mate (and, thus, punish) the probability for irrelevant documents, which is not
too bad, as the they were irrelevant anyway.

Now this probability can be used to adjust the scores according to the GDO.
The straightforward usage would be to discard a document d during retrieval
with a probability of (1 − Pλ

F (d)), but this would produce non-deterministic

8

behavior. Instead we adjust the DocumentScores of a document d with regard
to a term t by aggregating the scores and the probability; for simplicity, we
multiply them in our current experiments.

DocumentScore′(d, t) = DocumentScore(d, t) ∗ Pλ
F (d)

This formula reduces the scores for frequent documents, which avoids dupli-
cate results. Note that Pλ

F (document) decreases with λ, thus frequent documents
are still returned by peers asked early, but discarded by the subsequent peers.

5.2 Apply GDO to Query Routing

In most of the existing approaches to query routing, the quality of a peer is
estimated using per-term statistics about the documents that are contained in its
collection. Popular approaches include counting the number of documents that
contain this term (document frequency), or summing up the document scores
for all these documents (score mass). These term-specific scores are combined
to form an aggregated PeerScore with regard to a specific query. The peers are
ordered according to their PeerScore to form a peer ranking that determines an
order in which the peers will be queried.

The key insight of our approach to tackle the problem of retrieving duplicate
documents seems obvious: the probability of a certain document being contained
in at least one of the involved peers increases with the number of involved peers.
Additionally, the more popular the document, the higher the probability that it
is contained in one of the first peers to contribute to a query. Thus, the impact
of such documents to the PeerScore should decrease as the number of involved
peers increases.

If a candidate peer in the ranking contains a large fraction of popular docu-
ments, it would be increasingly unwise to query this peer at later stages of the
ranking, as the peer might not have any fresh (i.e., previously unseen) documents
to offer. In contrast, if no peers have been queried yet, then a peer should not be
punished for containing popular documents, as we certainly do want to retrieve
those documents. We suggest an extension that is applicable to almost all pop-
ular query routing strategies and calculates the PeerScore of a peer depending
on its position in the peer ranking.

For this purpose, we modify the score of each document in a collection with
different biases, one for each position in a peer ranking2. In other words, there is
no longer only one DocumentScore for each document, but rather several Doc-
umentScores corresponding to the potential ranks in a peer ranking. Remember
from the previous section, that the DocumentScore of a document d with regard
to term t is calculated using the following formula:

DocumentScore′(d, t, λ) = DocumentScore(d, t) ∗ Pλ
F (d)

2 Please note that, for techniques that simply count the number of documents, the
scores of all relevant documents are initially set to 1.

9

where λ is the position in the peer ranking (i.e., the number of peers that
have already contributed to the query before), and Pλ

F (d) is the probability that
this document is not contained in any of the previously contributing collections.

From this set of DocumentScores, each peer now calculates separate term-
specific scores (i.e., the scores that serve as subscores when calculating PeerScores
in the process of Query Routing) corresponding to the different positions in
a peer ranking by combining the respectively biased document scores. In the
simplest case where the PeerScore was previously calculated by summing up
the scores for all relevant documents, this means that now one of these sums is
calculated for every rank λ:

score(p, t, λ) =
∑

d∈Dp

DocumentScore′(d, t, λ)

where Dp denotes the document collection of p. Instead of including only
one score in each term-specific post, now a list of the term-specific peer scores
score(p, t, λ) is included in the statistics that is published to the distributed
directory. Figure 3 shows some extended statistics for a particular term. The
numbers shown in the boxes left to the scores represent the respective ranks in a
peer ranking. Please note that the term-specific score of a peer decreases as the
document scores for its popular documents decrease with the ranking position.
Previous experiments have shown that typically involving only 2-3 peers in a
query already yields a reasonable recall; we only calculate score(p, t, λ) for λ ≤ 10
[20] as we consider asking more than 10 peers very rare and not compatible
with our goal of system scalability. The calculation itself of this magnitude of
DocumentScores is negligible.

Fig. 3. Extended Term-specific scores for different ranking positions

Please also note that this process does not require the selected peers to locally
execute the queries sequentially, but it allows for the parallel query execution of
all peers involved: after identifying the desired number of peers and their ranks in
the peer ranking, the query initiator can contact all other peers simultaneously
and include their respective ranks in the communication. Thus, the modification
of the standard approach using GDOs does not cause additional latencies.

10

The additional network resource consumption needed for our proposed ap-
proach is relatively small if the GDO distributed directory is conducted in a
clever manner. Instead of distributing the GDO counters across the peers using
random hashing on unique document identifiers, we propose to maintain the
counters at peers that are responsible for a representative term within the doc-
ument, (e.g., the first term or the most frequent term). Doing so, the peers can
easily piggyback the GDO-related communication when publishing the Posts
and, in turn, they can immediately receive the current GDO values for the same
documents. The GDO values are then cached locally and used to update the
local DocumentScores, that will eventually be used when publishing our Posts
again. The Posts themselves become slightly larger as more than one score values
are now included in each Post; but this typically fits within the existing network
message avoiding extra communication.

5.3 Apply GDO to Query Execution

The peers that have been selected during query routing can additionally use
GDO-based biases to penalize popular documents during their local query ex-
ecution. The later a peer is involved in the processing of a query, the higher
punishing impact this GDO-based bias should have as popular documents are
likely to be returned from prior peers. For this purpose, each peer re-weights the
DocumentScores obtained by its local query execution with the GDO-values for
the documents.

Fig. 4. The impact of GDO-enhanced query execution.

Figure 4 shows the impact of the GDO-based local query execution.
The additional cost implied by our approach within the query execution step

is negligible. As the GDO values are cached locally as described in a previous
section, the DocumentScores can easily be adjusted on-line using a small number

11

of basic arithmetic operations. Alternatively, all the position-dependent GDO-
based document scores can be pre-calculated and cached locally, as in the case
of the GDO values. Either of the approaches is inexpensive and feasible.

5.4 Maintaining the GDO values

The approach introduced above builds on top of a directory that globally counts
the number of occurrences or each document. When a new peer joins the network,
it updates the GDO values for all its documents (i.e., increment the respective
counters) and retrieves the GDO values for the computation of its biased scores
at a low extra cost. Similarly, before a peer leaves the network, it reduces the
GDO values for all its documents.

We propose the usage of the existing distributed DHT-based directory to
maintain the GDO values in a scalable way. In a naive approach, the document
space is partitioned across all peers using globally unique document identifiers,
e.g., by applying a hash function to their URLs and maintaining the counter at
the DHT peer that is responsible for this identifier (analogously to the term-
specific statistics that are maintained independently in parallel). This naive ap-
proach requires two messages for each document per peer (one when the peer
enters and one when the peer leaves the network), which results to O(n) messages
for the whole system, where n is the number of document instances.

In an effort to reduce the number of messages required for maintaining the
distributed GDO directory, we change the hashing function used in distributing
the GDO counters. For each document, we maintain its GDO at the peer that is
responsible for a representative term within the document, (e.g., the first term or
the most frequent term). We can then easily piggyback the GDO-related commu-
nication at the messages created when publishing the Posts; they will both have
the same recipient peer. In turn, the response message can include the current
GDO values for the same documents from the distributed directory. The GDO
values are then cached locally and used to update the local DocumentScores,
that will eventually be used when publishing our Posts again. The Posts them-
selves become slightly larger as more than one score value is now included in a
Post; however this typically fits within the existing network message avoiding
extra communication.

The latter approach almost completely avoids additional messages. In fact,
when a peer enters the network, no additional messages are required for the GDO
maintenance, as all messages are piggybacked in the process of publishing Post
objects to the directory. Most importantly, there is no extra overhead in running
the Peer− lookup function at the DHT for finding the responsible peer for each
GDO counter; the responsible peers for each document are already discovered
from the process of publishing the Posts.

To cope with the dynamics of a Peer-to-Peer system, in which peers join and
leave the system autonomously and without prior notice, we go one step further
and propose the following technique. Each object in the global directory is as-
signed a TTL (time-to-live) value, after which it is discarded by the maintaining
peer. In turn, each peer is required to re-send its information periodically. This

12

fits perfectly with our local caching of GDO values, as these values can be used
when updating the Post objects. This update process, in turn, again updates the
local GDO values.

6 Experiments

6.1 Benchmarks

We have generated two synthetic benchmarks. The first benchmark includes 500
peers and 10000 documents, while the second benchmark consists of 1000 peers
and 10000 documents. In both the benchmarks, the 10000 documents are created
by randomly assigning 100 terms to them, so that each document gets exactly 4
terms. The term-specific scores for the documents follow a Zipf[36] distribution
(α = 0.8). The assumption that the document scores follow Zipf’s law is widely
accepted in information retrieval literature.

The document replication follows a Zipf distribution too (α = 0.8). This
means that most documents are assigned to a very small number of peers (i.e.,
have a low GDO value) and only very few documents are assigned to a large
number of peers (i.e., have a high GDO value). Please note that, although the
GDOs and the document scores of the documents are both following a Zipf
distribution, the two distributions are not connected. This means that we do not
expect a document with a very high importance for one term to be also highly
replicated, or the other way around. We do not believe that this would create
real-world document collections as we know from personal experiences that the
most popular documents are not necessarily the most relevant documents for
any possible relevant query.

6.2 Evaluated Strategies

In our experimental evaluation, we compare 7 different strategies. All strategies
consist of the query routing part and the query execution part. For query routing,
our baseline algorithm for calculating the PeerScore of a peer p works as follows:

• score(p, t) =
∑

d∈Dp
DocumentScore(d, t), i.e., the (unbiased) score mass of

all relevant documents in p’s collection Dp

• PeerScore(p, q) =
∑

t∈q score(p, t), i.e., the sum over all term-specific scores
for all terms t contained in the query q

For the query execution part, the synthetically created DocumentScores were de-
rived by summing up the (synthetically assigned) term-specific scores described
above. The top-20 documents for the query were detected, and returned to the
query initiator.

At both stages, query routing and query execution, we had to choose between
a standard (non-GDO) approach or our GDO-enhanced approach, yielding a
total of four strategies: (a) the baseline (GDO-free) approach, (b) GDO-based
query routing, but normal query execution, (c) GDO-based query execution but

13

normal query routing, and (d) the full power GDO-based approach, where the
GDO biases both query routing and query execution. The GDO values were
provided to each strategy using global knowledge of our data.

In the evaluation we also include a greedy near-optimal algorithm. This algo-
rithm in each step queries the most promising peer, acquires the results, and then
broadcasts them to all the peers, so that they are not used in the query routing
or query execution again for the same query. Then, all the peers re-evaluate
themselves for the query, to calculate their new PeerScore for that query. The
performance of this algorithm serves as a rough indication of the upper bounds
of the performance of any distributed query processing algorithm. While the
algorithm is straight-forward in implementation, it has practical difficulties for
real-life usage, such as an overwhelming network usage and an increased delay
due to its serialized nature (no two peers can be queried at the same time). It
should be clear to the reader that this approach does not yield optimal results;
there are cases where a cleverer (a more modest) selection of peers can result to
more unique documents. Yet, the results produced are approaching the optimal
results, which could only be found with exponential cost.

In addition, we employ two other strategies that use a Mod-κ sampling-based
query execution technique to return fresh documents: In the query routing and
query execution process, the peers consider and return only documents with
(DocumentId mod κ) = λ. κ is typically equal to the total number of peers
that are going to be queried (i.e. top-10), and λ is the number of peers that
have already been queried. In the case that the peer does not have enough
documents to complete the required number of documents to a query (in the
query execution step only), it also includes documents that do not satisfy the
equation (DocumentId mod κ) = λ, ordered descending in their DocumentScore
for the query. In our tests, we experiment with κ = 5 and κ = 10.

6.3 Evaluation Methodology

We run several queries (a total of 20) using the seven strategies introduced above.
Our queries have from 1 to 4 randomly selected keywords (average 2.5 keywords
per query). In each case, we send the query to the top-10 peers suggested by each
approach, and collect the local top-20 documents from each peer. Additionally,
we run the queries on a combined collection of all peers to retrieve the global
top-100 documents that serves as a baseline for our strategies.

We use the following metrics to assess the quality of each strategy:

• the number of distinct retrieved documents, i.e., after eliminating duplicates
• the score mass (for the query) of all the retrieved distinct documents3

• the number of distinct retrieved top-100 documents
• the score mass (for the query) of the retrieved distinct top-100 documents
• the number of replicated documents retrieved from each approach (the first

occurrence of a multiply-returned document is not counted as a replica)
3 Note that, by our experimental design, the same document is assigned the same

score at different peers.

14

6.4 Results

The experiments are conducted on both the benchmark collections. The GDO-
enhanced strategies show significant performance gains. In all our measures, the
full power GDO-based approach performs significantly better than the baseline
approach. In fact, it approaches the near-optimal results, obtained from the
greedy algorithm.

Figures 5.a and 5.b show the number of distinct documents retrieved from
each approach, in the 500-peers and the 1000-peers setup respectively. As ex-
pected, the full power GDO-based approach (when GDO used for both query
routing and query execution) performs significantly better than the GDO-free
approach. It returns more than double relevant documents than its GDO-free
counterpart. Even disabling the GDO-based enhancement in either query rout-
ing or query execution, the approach is still significantly better than the GDO-
free approach. Not surprisingly, Mod-5 and Mod-10 approaches are very keen
in returning fresh documents; they are very effective in avoiding replicas. They
outperform all the other approaches except the non-implementable greedy ap-
proach. However, the documents returned from the Mod-κ approaches are of
very low document score with our query - see Figure 6.

a. 500-peer setup b. 1000-peer setup

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10
Queried peers

of

 d
oc

um
en

ts

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10
Queried peers

of

 d
oc

um
en

ts

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10
Queried peers

of

 d
oc

um
en

ts

Routing:Score, Execution:Score Routing:Score, Execution:GDO-score
Routing:GDO-score, Execution:Score Routing:GDO-score, Execution:GDO-score
Mod-5 approach Mod-10 approach
Greedy Routing and Execution

Fig. 5. Number of retrieved relevant documents

Figure 6 compares the aggregated score masses for the retrieved documents
in each approach. Again, the full power GDO-based approach performs signifi-
cantly better than the GDO-free approach, returning documents with over 33%
more score mass. Applying GDO in only one of the two steps again has a sig-
nificant contribution in the performance. The Mod-5 and Mod-10 approaches
are now performing worse than the full power GDO-based approach. Even more

15

interesting, combining the score mass with the number of relevant documents
returned from each approach, we realize that the documents originally returned
from the Mod-5 and Mod-10 approaches had a moderate-to-low relevance score
for our query; the average document score, even at the first most promising peer
was below 0.15 with the Mod-κ approaches, while the respective average score
in the baseline and GDO approaches was twice as much. This indicates that the
retrieved documents from the Mod-κ approaches were only slightly relevant; yet,
they were counted as relevant from our evaluation, thus increasing the number
of returned relevant documents (Figure 5).

a. 500-peer setup b. 1000-peer setup

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10
Queried peers

Sc
or

e
M

as
s

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10
Queried peers

Sc
or

e
M

as
s

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10
Queried peers

of

 d
oc

um
en

ts

Routing:Score, Execution:Score Routing:Score, Execution:GDO-score
Routing:GDO-score, Execution:Score Routing:GDO-score, Execution:GDO-score
Mod-5 approach Mod-10 approach
Greedy Routing and Execution

Fig. 6. Score mass of retrieved relevant documents

Figure 7, comparing the number of the top-100 returned documents at each
approach, also yields interesting results. The number of the top-100 returned
documents from the full power GDO-based approach was about 10% better than
the GDO-free approach. An interesting observation was that the GDO-based
query execution results in less top-100 documents, compared to the GDO-free
counterpart; thus, the best approach for retrieving top-100 documents appears
to be when employing the GDO-based scores only for query routing. We expect
that this behaviour is due to some very frequent low-ranked top-100 documents4.
These documents get replaced from some less popular documents, slightly less
relevant, which do not belong in the top-100 documents. While the loss is of
insignificant practical value, due to the hard-line approach used for selecting
the top-100 documents, the results show a noticeable difference for the top-100
related measures. It is important to note that the same behaviour occurs in the

4 The reader is reminded that the top-100 documents are selected using their relevance
rank with the query from the global document collection

16

1000-peer setup, for the same reason. Finally, the top-100 documents returned
from the Mod-κ approaches were very few, a lot worse than the original GDO-
free approach. The same conclusions are obtained from analyzing the aggregate
score mass for the top-100 returned documents (Figure 8).

a. 500-peer setup b. 1000-peer setup

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10
Queried peers

of

 T
op

-1
00

 d
oc

um
en

ts

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10
Queried peers

of

 T
op

-1
00

 d
oc

um
en

ts

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10
Queried peers

of

 d
oc

um
en

ts

Routing:Score, Execution:Score Routing:Score, Execution:GDO-score
Routing:GDO-score, Execution:Score Routing:GDO-score, Execution:GDO-score
Mod-5 approach Mod-10 approach
Greedy Routing and Execution

Fig. 7. Number of retrieved top-100 documents with regard to the number of queried
peers

We also compare the number of the replicated documents in each approach(Figure
9); these are the documents returned to the query initiator more than once for
the same query (the first occurrence of such a document is not counted as a
replica). This measure should be as low as possible; ideally 0. Since multiple
replicas of the same document do not contribute on the quality of the answer,
we want them to be replaced from other unseen relevant documents. The full
power GDO-based version detects and avoids half of the replicas occurring in the
baseline (GDO-free) approach. It is also notable that even the GDO-based query
routing as well as the GDO-based query execution alone can positively affect the
performance; the former by proposing peers with mostly novel results, and the
latter by proposing mostly novel documents from the selected peers. However, as
expected, even the full power GDO-based version is not capable in detecting and
avoiding all the replications. It is in fact a lot worse than the greedy algorithm,
whose results resemble the optimal ones (completely avoid replications). Not
surprisingly, the Mod-k approaches can also avoid all the replications in the first
k peers (yet, not without a sacrifice in the quality of the retrieved documents).

Note that in our experiments we were retrieving 20 documents from each
peer, for the top-10 peers, which resulted to a total of 200 documents for each
query. However, there were some single-keyword queries for which the actual
distribution of the relevant documents did not permit the retrieval of as much as

17

a. 500-peer setup b. 1000-peer setup

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10
Queried peers

S
co

re
 M

as
s

of
 re

tri
ev

ed
 T

op
-1

00
 d

oc
um

en
ts

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10
Queried peers

S
co

re
 M

as
s

of
 re

tri
ev

ed
 T

op
-1

00
 d

oc
um

en
ts

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10
Queried peers

of

 d
oc

um
en

ts

Routing:Score, Execution:Score Routing:Score, Execution:GDO-score
Routing:GDO-score, Execution:Score Routing:GDO-score, Execution:GDO-score
Mod-5 approach Mod-10 approach
Greedy Routing and Execution

Fig. 8. Score Mass of retrieved top-100 documents with regard to the number of queried
peers

200 distinct documents by asking only 10 peers. In these cases, the peers returned
only the relevant documents they had, according to their approach, which were
fewer than 20. Thus, the number of the distinct relevant documents and the
number of the replicated documents cannot be mathematically correlated, and
both of them are measured in the experiments independently.

The overall conclusion of the experimental evaluation is that the GDO-based
scoring in both query routing and query execution has a significant positive
impact in improving the number and the quality of the retrieved documents.
Unlike the Mod-κ approaches, it manages to retrieve a large number of unique
yet highly relevant documents. Compared to the baseline approach, it presents
a significant improvement in recall and avoids more than half of the replicated
results.

7 Conclusion and Future Work

This work presents an approach towards improving the query processing in Peer-
to-Peer Information Systems. The approach is based on the notion of Global
Document Occurrences (GDO) and aims at increasing the number of uniquely
retrieved high-quality documents without imposing significant additional net-
work load or latency. Our approach can be applied both at the stage of query
routing (i.e., when selecting promising peers for a particular query) and when
locally executing the query at these selected peers. The additional cost incurred
for building and maintaining the required statistical information is small and
our approach is expected to scale very well with a growing network. Early ex-

18

a. 500-peer setup b. 1000-peer setup

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10
Queried peers

of

 re
pl

ic
at

ed
 d

oc
um

en
ts

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10
Queried peers

of

 re
pl

ic
at

ed
 d

oc
um

en
ts

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10
Queried peers

of

 d
oc

um
en

ts

Routing:Score, Execution:Score Routing:Score, Execution:GDO-score
Routing:GDO-score, Execution:Score Routing:GDO-score, Execution:GDO-score
Mod-5 approach Mod-10 approach
Greedy Routing and Execution

Fig. 9. Replicated documents with regard to the number of queried peers

periments show the potential of our approach, significantly increasing the recall
experienced in our settings.

We are currently working on experiments on real data obtained from focused
web crawls, which exactly fits our environment of peers being users with individ-
ual interest profiles. Also, a more thorough study of the resource consumption of
our approach in under way. One central point of interest is the directory mainte-
nance cost; in this context, we evaluate strategies that do not rely on periodically
resending all information, but on explicit GDO increment/decrement messages.
Using a time-sliding window approach might allow us to even more accurately
estimate the GDO values, with an even lower overhead.

References

1. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the ACM SIGCOMM 2001, ACM Press (2001) 149–160

2. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: Proceedings of ACM SIGCOMM 2001, ACM Press (2001)
161–172

3. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware). (2001) 329–350

4. Buchmann, E., Böhm, K.: How to Run Experiments with Large Peer-to-Peer Data
Structures. In: Proceedings of the 18th International Parallel and Distributed
Processing Symposium, Santa Fe, USA. (2004)

5. Aberer, K., Punceva, M., Hauswirth, M., Schmidt, R.: Improving data access in
p2p systems. IEEE Internet Computing 6 (2002) 58–67

19

6. Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data.
Morgan Kaufmann, San Francisco (2002)

7. Fuhr, N.: A decision-theoretic approach to database selection in networked IR.
ACM Transactions on Information Systems 17 (1999) 229–249

8. Gravano, L., Garcia-Molina, H., Tomasic, A.: Gloss: text-source discovery over the
internet. ACM Trans. Database Syst. 24 (1999) 229–264

9. Si, L., Jin, R., Callan, J., Ogilvie, P.: A language modeling framework for resource
selection and results merging. In: Proceedings of CIKM02, ACM Press (2002)
391–397

10. Xu, J., Croft, W.B.: Cluster-based language models for distributed retrieval. In:
Research and Development in Information Retrieval. (1999) 254–261

11. Callan, J.: Distributed information retrieval. Advances in information retrieval,
Kluwer Academic Publishers. (2000) 127–150

12. Nottelmann, H., Fuhr, N.: Evaluating different methods of estimating retrieval
quality for resource selection. In: Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in informaion retrieval, ACM
Press (2003) 290–297

13. Grabs, T., Böhm, K., Schek, H.J.: Powerdb-ir: information retrieval on top of a
database cluster. In: Proceedings of CIKM01, ACM Press (2001) 411–418

14. Melnik, S., Raghavan, S., Yang, B., Garcia-Molina, H.: Building a distributed
full-text index for the web. ACM Trans. Inf. Syst. 19 (2001) 217–241

15. Byers, J., Considine, J., Mitzenmacher, M., Rost, S.: Informed content delivery
across adaptive overlay networks. In Proceedings of ACM SIGCOMM, 2002. (2002)

16. Ganguly, S., Garofalakis, M., Rastogi, R.: Processing set expressions over contin-
uous update streams. In: SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, ACM Press (2003) 265–276

17. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13 (1970) 422–426

18. Mitzenmacher, M.: Compressed bloom filters. IEEE/ACM Trans. Netw. 10 (2002)
604–612

19. Florescu, D., Koller, D., Levy, A.Y.: Using probabilistic information in data inte-
gration. In: The VLDB Journal. (1997) 216–225

20. Bender, M., Michel, S., Weikum, G., Zimmer, C.: The MINERVA project: Database
selection in the context of P2P search. In: BTW 2005. (2005)

21. Zhang, Y., Callan, J., Minka, T.: Novelty and redundancy detection in adaptive
filtering. In: SIGIR ’02: Proceedings of the 25th annual international ACM SI-
GIR conference on Research and development in information retrieval, ACM Press
(2002) 81–88

22. Nie, Z., Kambhampati, S., Hernandez, T.: Bibfinder/statminer: Effectively mining
and using coverage and overlap statistics in data integration. In: VLDB. (2003)
1097–1100

23. Hernandez, T., Kambhampati, S.: Improving text collection selection with coverage
and overlap statistics. pc-recommended poster. WWW 2005. Full version available
at http://rakaposhi.eas.asu.edu/thomas-www05-long.pdf (2005)

24. Bender, M., Michel, S., Triantafillou, P., Weikum, G., Zimmer, C.: Improving
collection selection with overlap awareness in p2p systems. In: Proceedings of the
SIGIR Conference. (2005)

25. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. The MIT Press, Cambridge, Massachusetts (1999)

26. Croft, W.B., Lafferty, J.: Language Modeling for Information Retrieval. Volume 13.
Kluwer International Series on Information Retrieval (2003)

20

27. Bender, M., Michel, S., Weikum, G., Zimmer, C.: Minerva: Collaborative p2p
search. In: Proceedings of the VLDB Conference (Demonstration). (2005)

28. Bender, M., Michel, S., Weikum, G., Zimmer, C.: Bookmark-driven query routing
in peer-to-peer web search. In Callan, J., Fuhr, N., Nejdl, W., eds.: Proceedings of
the SIGIR Workshop on Peer-to-Peer Information Retrieval. (2004) 46–57

29. Buckley, C., Salton, G., Allan, J.: The effect of adding relevance information in a
relevance feedback environment. In: SIGIR, Springer-Verlag (1994)

30. Luxenburger, J., Weikum, G.: Query-log based authority analysis for web infor-
mation search. In: WISE04. (2004)

31. Srivastava et al., J.: Web usage mining: Discovery and applications of usage pat-
terns from web data. SIGKDD Explorations 1 (2000) 12–23

32. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: Symposium on Principles of Database Systems. (2001)

33. Nepal, S., Ramakrishna, M.V.: Query processing issues in image (multimedia)
databases. In: ICDE. (1999) 22–29

34. Guntzer, U., Balke, W.T., Kiesling, W.: Optimizing multi-feature queries for image
databases. In: The VLDB Journal. (2000) 419–428

35. Theobald, M., Weikum, G., Schenkel, R.: Top-k query evaluation with probabilistic
guarantees. VLDB (2004)

36. Zipf, G.K.: Human Behaviour and the Principle of Least Effort: an Introduction
to Human Ecology. Addison-Wesley (1949)

21

