Noname manuscript No.
(will be inserted by the editor)

Sketching Distributed Sliding-Window Data Streams

Odysseas Papapetrou - Minos Garofalakis - Antonios Deligiannakis

the date of receipt and acceptance should be inserted later

Abstract While traditional data-management systems fo-
cus on evaluating single, ad-hoc queries over static data sets
in a centralized setting, several emerging applications re-
quire (possibly, continuous) answers to queries on dynamic
data that is widely distributed and constantly updated. Fur-
thermore, such query answers often need to discount data
that is “stale”, and operate solely on a sliding window of
recent data arrivals (e.g., data updates occurring over the
last 24 hours). Such distributed data streaming applications
mandate novel algorithmic solutions that are both time- and
space-efficient (to manage high-speed data streams), and also
communication-efficient (to deal with physical data distri-
bution). In this paper, we consider the problem of complex
query answering over distributed, high-dimensional data
streams in the sliding-window model. We introduce a novel
sketching technique (termed ECM-sketch) that allows effec-
tive summarization of streaming data over both time-based
and count-based sliding windows with probabilistic accu-
racy guarantees. Our sketch structure enables point as well
as inner-product queries, and can be employed to address
a broad range of problems, such as maintaining frequency
statistics, finding heavy hitters, and computing quantiles in
the sliding-window model. Focusing on distributed environ-
ments, we demonstrate how ECM-sketches of individual,
local streams can be composed to generate a (low-error)

The final publication is available at
http://dx.doi.org/10.1007/s00778-015-0380-7.

Springer via

O. Papapetrou
Technical University of Crete
E-mail: papapetrou@softnet.tuc.gr

M. Garofalakis
Technical University of Crete
E-mail: minos @softnet.tuc.gr

A. Deligiannakis
Technical University of Crete
E-mail: adeli @softnet.tuc.gr

ECM-sketch summary of the order-preserving merging of
all streams; furthermore, we show how ECM-sketches can
be exploited for continuous monitoring of sliding-window
queries over distributed streams. Our extensive experimen-
tal study with two real-life data sets validates our theoreti-
cal claims and verifies the effectiveness of our techniques.
To the best of our knowledge, ours is the first work to ad-
dress efficient, guaranteed-error complex query answering
over distributed data streams in the sliding-window model.

1 Introduction

The ability to process, in real time, continuous high-volume
streams of data is a common requirement in many emerging
application environments. Examples of such applications in-
clude, sensor networks, financial data trackers, and intrusion-
detection systems. As a result, in recent years, we have seen
a flurry of activity in the area of data-stream processing.
Unlike conventional database query processing that requires
several passes over a static, archived data image, data-stream
processing algorithms often rely on building concise, ap-
proximate (yet, accurate) sketch synopses of the input streams
in real time (i.e., in one pass over the streaming data). Such
sketch structures typically require small space and update
time (both significantly sublinear in the size of the data),
and can be used to provide approximate query answers with
guarantees on the quality of the approximation. These an-
swers can be more than sufficient for typical exploratory
analysis of massive data, where the goal is to detect inter-
esting statistical behavior and patterns rather than obtain an-
swers that are precise to the last decimal. Large-scale stream
processing applications are also inherently distributed, with
several remote sites observing their local stream(s) and ex-
changing information through a communication network.
This distribution of the data naturally imposes critical

Odysseas Papapetrou et al.

communication-efficiency requirements that prohibit naive
solutions that centralize all the data, due to its massive vol-
ume and/or the high cost of communication (e.g., in sen-
sornets). Communication efficiency is particularly important
for distributed event-monitoring scenarios (e.g., monitoring
sensor or IP networks), where the goal is real-time tracking
of distributed measurements and events, rather than one-shot
answers to sporadic queries [33].

Several query models for streaming data have been ex-
plored over the past decade. Streaming data items naturally
carry a notion of “time”, and, in many applications, it is im-
portant to be able to downgrade the importance (or, weight)
of older items; for instance, in the statistical analysis of trends
or patterns in financial data streams, data that is more than a
few months old might be considered “stale” and irrelevant.
Various time-decay models for querying streaming data have
been proposed in the literature, mostly differentiating on the
relation of an item’s weight to its age (e.g., exponential or
polynomial decay [7]). The sliding-window model [16] is
one of the most prominent and intuitive time-decay mod-
els that considers only a window of the most recent items
seen in the stream thus far (i.e., items outside the window
are “aged out” or given a weight of zero). The window itself
can be either time-based (i.e., items seen in the last [V time
units) or count-based (i.e., the last N items). Several algo-
rithms have been proposed for maintaining different types
of statistics over sliding-window data streams while requir-
ing time and space that is significantly sublinear (typically,
poly-logarithmic) in the window size [16,21,32,34]. Still,
the bulk of existing work on the sliding-window model has
focused on tracking basic counts and other simple aggre-
gates (e.g., sums) over one-dimensional streams in a cen-
tralized setting. Recent work has also considered the case of
distributed data; however, no existing techniques can handle
flexible, complex aggregate queries over rapid, high-dimen-
sional distributed data streams, e.g., with each dimension
corresponding to the number of packets originating by an IP
address, and the number of possible IP addresses reaching
248 for IPv6.

Example: Recent work on effective network-monitoring sys-

tems (e.g., for detecting DDoS attacks or network-wide anoma-

lies in large-scale IP networks) has stressed the importance
of an efficient distributed-triggering functionality [26,28,
24,23]. In their early work, Jain et al. [26] discuss a generic
distributed attack-detection scheme relying on the ability to
maintain frequency statistics for high-dimensional data over
sliding windows. In particular, each node (e.g., a network
router implementing Cisco’s Netflow protocol, a wireless
access point, or a peer in a P2P network) maintains a sliding-
window count of all observed messages for each target IP
address. If this count exceeds a pre-determined threshold,
which is determined based on the capacity of the target ma-
chine (possibly expressing the fair share of each client to the

target machine), an event is triggered to a central coordinator
as a warning of possible overloading. The coordinator then
collects network-wide statistics to monitor overloaded nodes
or abnormal behavior. More recent efforts have focused on
different variants and extensions of this basic scheme, of-
ten requiring more extensive data/statistics collection and
more sophisticated analyses [24,23]. (Note that such data
collection mechanisms are supported by commercial prod-
ucts, such as the Cisco Netflow Collection Engine solution.)

The ability to efficiently summarize high-dimensional
data over sliding windows is obviously crucial to such mon-
itoring schemes, given the tremendous volume of network-
data streams and their massive domain sizes (e.g., 2*® for
IPv6 addresses). This raises a critical need for synopsis data
structures that can compactly capture accurate frequency sta-
tistics for a vast domain space over sliding windows. Fur-
thermore, to enable the coordinator to aggregate data com-
ing from different nodes (a requirement for detecting DDoS
attacks), we need to be able to compose individually con-
structed synopses to a single synopsis which can capture the
global state of the network and help isolate network-wide
abnormalities. Thus, we are faced with the difficult chal-
lenge of designing effective, composable synopses that can
support potentially complex sliding-window analysis queries
over massive, distributed network-data streams. O

Note that similar requirements are frequently observed
in other domains, e.g., for identifying misbehaving nodes in
large wireless networks, for training of classifiers with dis-
tributed training data that expires over time, and for ranking
products in a cloud-based e-shop, based on the number of
recent visits of each product.

Our Contributions. In this paper, we consider the problem
of answering potentially complex continuous queries over
distributed, high-dimensional data streams in the sliding-
window model. Our contributions can be summarized as
follows.

o ECM-Sketches for Sliding-Window Streams. We intro-
duce a novel sketch synopsis (termed ECM-sketch) that al-
lows effective summarization of streaming data over both
time-based and count-based sliding windows with proba-
bilistic accuracy guarantees. In a nutshell, our ECM-sketch
combines the well-known Count-Min sketch structure [11]
for conventional streams with state-of-the-art tools for sliding-
window statistics. The end result is a sliding-window sketch
synopsis that can provide provable, guaranteed-error perfor-
mance for point, as well as inner-product, queries, and can
be employed to address a broad class of queries, such as
maintaining frequency statistics, finding heavy hitters, and
computing quantiles in the sliding-window model.

¢ Time-based Sliding Windows over Distributed Streams.
Focusing on distributed environments, we demonstrate how
ECM-sketches summarizing time-based sliding windows of

Sketching Distributed Sliding-Window Data Streams

individual streams can be composed to generate a guaranteed-
error ECM-sketch synopsis of the order-preserving merg-
ing of all streams. While conventional Count-Min sketches
are trivially composable, composing ECM-sketches is more
challenging since it requires merging of the sliding-window
statistics maintained in the sketch. Therefore, as part of our
merging solution for ECM-sketches, we also provide the
theoretical foundations and an efficient algorithm for merg-
ing sliding window statistics of deterministic algorithms [16,
21]. This is an important result on its own given the wide ap-
plicability of these algorithms, as well as their substantially
higher efficiency and compactness compared to randomized
sliding window algorithms, which are more easily compos-
able [21,35]. This increased efficiency comes at the cost of
a slight inflation of the worst-case error guarantee due to the
composition, which however can be easily controlled, even
in large hierarchical networks with iterative mergings.

e Continuous Query Monitoring for Complex Queries
over Distributed Streams. We show how ECM-sketches
can be exploited in the context of the geometric framework
of Sharfman et al. [33] for continuous monitoring of sliding-
window queries over distributed streams. We demonstrate
the sketch-enhanced geometric framework by addressing two
frequent requirements of distributed stream monitoring ap-
plications: (a) maintaining the set of items with a frequency
surpassing a threshold (e.g., the IP addresses that exchange
an excessive amount of messages over a sliding window),
and, (b) maintaining an estimate for the self-join size of a
stream over the sliding window, a useful measure for con-
structing efficient distributed query execution plans. Empow-
ered by the compactness and efficiency of the underlying
sketches, the geometric framework can now monitor such

queries in a both computational-efficient and network-efficient

manner.

¢ Experimental Study and Validation. We perform a thor-
ough experimental evaluation of our techniques using two
massive real-life data sets, in both centralized and distributed
settings. The results of our study verify the efficiency and
effectiveness of our ECM-sketch synopses in a variety of ap-
plications, and expose interesting functional trade-offs. When
compared to algorithms based on randomized sliding win-
dow synopses — which are the only ones that were consid-
ered for composition up to now — ECM-sketches reduce the
memory and computational requirements by at least one or-
der of magnitude with a very small loss in accuracy. Similar
savings apply to the network requirements.

2 Related Work

Centralized and Distributed Data Streams. Most prior
work on data-stream processing has focused on developing
space-efficient, one-pass algorithms for performing a wide

range of centralized, one-shot computations on massive data
streams; examples include computing quantiles [22], esti-
mating distinct values [19], counting frequent elements (i.e.,
“heavy hitters”) [6,10], and estimating join sizes and stream
norms [1, 11]. Out of these efforts, flexible, general-purpose
sketch summaries, such as the AMS [1] and the Count-Min
sketch [11] have found wide applicability in a broad range of
stream-processing scenarios. More recent efforts have also
concentrated on distributed-stream processing, proposing
communication-efficient streaming tools for handling a num-
ber of query tasks, including distributed tracking of sim-
ple aggregates [30], quantiles [9], and join aggregates [8],
as well as monitoring distributed threshold conditions [33].
All the above-referenced works assume a traditional, “full-
history” data stream and do not address the issues specific
to the sliding-window model.

Sliding-Window Stream Queries. As mentioned earlier, the
bulk of existing work on the sliding-window model has fo-
cused on algorithms for maintaining simple statistics, such
as basic counts and sums, in space and time that is signifi-
cantly sub-linear (typically, poly-logarithmic) in the sliding-
window size N. Exponential histograms [16] are a state-of-
the-art deterministic technique for maintaining e-approximate
counts and sums over sliding windows, using O(% 1og2 N)
space. Deterministic waves [21] solve the same basic count-
ing/summation problem with the same space complexity as
exponential histograms, but improve the worst-case update
time complexity to O(1); on the other hand, randomized
waves [21] rely on randomization through hashing to track
duplicate-insensitive counts (i.e., COUNT-DISTINCT aggre-
gates) over sliding windows. While randomized waves can
be easily composed (in distributed settings), they come with
an increased space requirement of O(logi# log2 N), where
0 is a small probability of failure. Xu et al. [35] describe a
randomized, sampling-based synopsis, very similar to ran-
domized waves, for tracking sliding-window counts and sums
with out-of-order arrivals (e.g., due to network delays) in a
distributed setting. As with randomized waves, their space
requirements are also quadratic in the inverse approximation
error; furthermore, their approach requires knowledge of the
maximum number of elements in any sliding window (to
set up the synopsis data structure), which could be problem-
atic in dynamic, widely-distributed environments. Cormode
et al. [14] also propose randomized techniques for handling
out-of-order arrivals for tracking duplicate-insensitive slid-
ing window aggregates. To address the high cost associated
with randomized data structures, Busch and Tirthapura pro-
pose a deterministic structure for handling out-of-order ar-
rivals in sliding windows [3]. Similar to the other determin-
istic structures, this structure also does not allow composi-
tion and focuses only on basic counts and sums.

More recent works develop protocols for efficient con-
tinuous monitoring of sliding window aggregates over dis-

Odysseas Papapetrou et al.

tributed architectures [5,12,13,15]. These techniques typi-
cally focus on reducing the network requirements for main-
taining random samples or simple statistics (such as basic
counts, heavy hitters, and quantiles) with accuracy guaran-
tees. Some aspects of these techniques could find use in the
case of ECM-sketches as well. In this work we have selected
to build the continuous monitoring scheme over the geomet-
ric method. The geometric method goes beyond monitoring
simple linear aggregates, by enabling distributed monitoring
of (possibly) complex functions that can be expressed over
the average values of the monitored variables, e.g., self-join
and inner product sizes. As such, we are able to monitor any
function that can be supported by the ECM-sketch.

Going beyond counts, sums, and simple aggregates, there
is surprisingly little work in the more general problem of
maintaining general, frequency-distribution synopses over

high-dimensional streaming data in the sliding-window model.

Hung and Ting [25] and Dimitropoulos et al. [17] propose
synopses based on Count-Min sketches for tracking heavy
hitters and frequency counts over sliding windows; still, their
techniques rely on keeping simple equi-width counters within
the sketch, and, thus, cannot provide any meaningful er-
ror guarantees, especially for small query ranges. Similarly,
the hybrid histograms of Qiao et al. [32] combine exponen-
tial histograms with simplistic equi-width histograms for an-
swering sliding-window range queries; again, these struc-
tures cannot give meaningful bounds on the approximation
error and cannot be composed in a distributed setting.

Chakrabati et al. briefly sketched the combination of Count-

min sketches and exponential histograms for computing the
entropy of a stream over a sliding window [4]. Compared to
that work, our work goes several steps forward. First, we
provide important materialization details, which were not
discussed in [4]. For example, we show how to automati-
cally choose the sketch configuration that satisfies the accu-
racy requirements and minimizes space complexity. Second,
we present merging algorithms for ECM-sketches (even the
ones that are based on deterministic sliding window algo-
rithms), which are necessary in many domains involving dis-
tributed stream processing. Finally, we present algorithms
for distributed continuous monitoring using ECM-sketches.

An early version of this work has previously appeared
in [31]. Compared to [31], in this article we follow a more
rigorous analysis, which leads to tighter theoretical error
bounds, and to substantial reduction of the size of the sketch.
Sketch size is typically reduced by a factor of three for ECM-
sketches based on deterministic sliding window algorithms,
and by a factor of six for the ones based on randomized
algorithms. Furthermore, we elaborate on continuous func-
tion monitoring with ECM-sketches, which was only briefly
mentioned in the original paper. This elaboration includes
a novel efficient monitoring algorithm, accompanied with

proof of correctness, and with extensive experimental eval-
uation.

3 Preliminaries

ECM-sketches combine the functionalities of Count-Min
sketches [11] and exponential histograms [16]. We now de-
scribe the two structures, focusing on the aspect related to
our work.

Count-Min Sketches. Count-Min sketches are a widely ap-
plied sketching technique for data streams. A Count-Min
sketch is composed of a set of d hash functions, hq (+), ha(*),
... hg(+), and a 2-dimensional array of counters of width w
and depth d. Hash function h; corresponds to row j of the
array, mapping stream items to the range of [1...w]. Let
CM]i, j] denote the counter at position (i, 7) in the array.
To add an item z of value v, in the Count-Min sketch, we
increase the counters located at C M4, h;(x)] by vy, for j €
[1...d]. A point query for an item ¢ is answered by hash-
ing the item in each of the d rows and getting the minimum
value of the corresponding cells, i.e., min;i:1 CM{j,h;(q)].
Note that hash collisions may cause estimation inaccura-
cies — only overestimations. By setting d = [In(1/§)] and
w = [e/e], where e is the base of the natural logarithm, the
structure enables point queries to be answered with an er-
ror of less than €||a||1, with a probability of at least 1 — ¢,
where ||a||; denotes the number of items seen in the stream.
Similar results hold for range and inner product queries.

Exponential Histograms. Exponential histograms [16] are
a deterministic structure, proposed to address the basic count-
ing problem, i.e., for counting the number of true bits in the
last IV stream arrivals. They belong to the family of methods
that break the sliding window range into smaller windows,
called buckets or basic windows, to enable efficient mainte-
nance of the statistics. Each bucket contains the aggregate
statistics, i.e., number of arrivals and bucket bounds, for
the corresponding sub-range. Buckets that no longer over-
lap with the sliding window are expired and discarded from
the structure. To compute an aggregate over the whole (or a
part of) sliding window, the statistics from all buckets over-
lapping with the query range are aggregated. For example,
for basic counting, aggregation is a summation of the num-
ber of true bits in the buckets. A possible estimation er-
ror can be introduced due to the oldest bucket inside the
query range, which usually has only a partial overlap with
the query. Therefore, the maximum possible estimation er-
ror is bounded by the size of the last bucket.

To reduce the space requirements, exponential histograms
maintain buckets of exponentially increasing sizes. Bucket
boundaries are chosen such that the ratio of the size of each
bucket b with the sum of the sizes of all buckets more recent
than b is upper bounded. In particular, the following invari-

Sketching Distributed Sliding-Window Data Streams

Notation [Description

N Length of the sliding window, in time units or
in number of arrivals

hi(-) Hash function i of the Count-Min sketch

ar, by Substream of stream a, b, within the query
range r

fa(z,m) Frequency of item z in stream a, within the
query range r

Eq(i,j,7) Estimated value of the ECM-sketch counter
for stream a in position (4, j) for query range
T

ar ® by, ar/é\br Real and estimated inner product of a, and b,

u(N, S) Upper bound of number of arrivals on stream
S within the sliding window of length NV

Table 1 Frequently used notation.

ant (invariant 1) is maintained for all buckets j: C;/(2(1 +
S71Cy)) < e where € denotes the maximum acceptable
relative error and C; denotes the size of bucket j (number
of true bits arrived in the bucket range), with bucket 1 being
the most recent bucket. Queries are answered by summing
the sizes of all buckets that fully overlap the query range,
and half of the size of the oldest bucket, if it partially over-
laps the query. The estimation error is solely contained in
the oldest bucket, and is therefore bounded by this invariant,
resulting to a maximum relative error of e.

4 ECM-Sketches

We now describe ECM-sketches (short for Exponential
Count-Min sketches), a composable sketch for maintaining
data stream statistics over sliding windows in distributed
environments. ECM-sketches combine the functionality of
Count-Min sketches and sliding windows, and support both
time-based and count-based sliding windows under the cash
register model. Therefore, they can be used for compactly
summarizing high-dimensional streams over sliding windows,
i.e., to maintain the observed frequencies of the stream items
within the sliding window range.

The core of the structure is a modified Count-Min sketch.
Count-Min sketches alone cannot handle the sliding win-
dow requirement. To address this limitation, ECM-sketches
replace the Count-Min counters with sliding window struc-
tures. Each counter is maintained as a sliding window, cov-
ering the last NV time units, or the last [V arrivals, depending
on whether we need time-based or count-based sliding win-
dows.

As discussed in Section 2, there have been several al-
gorithms proposed for sliding window maintenance. Due to
the large expected number of sliding window counters in
ECM-sketches, we require an algorithm with a small mem-
ory footprint. Existing randomized algorithms for sliding
window synopses (as discussed in Section 2) appear to have
a quadratic dependence to € and are therefore not good for

(x,t) f1 (1)
fﬁ_‘f}—*“hﬂw(m
T +(1,0

i W :

Fig. 1 Adding an element to the ECM-sketch.

our purposes. Instead, we employ exponential histograms, a
compact and efficient deterministic synopsis [16]. Each of
the Count-Min counters is implemented as an exponential
histogram, configured to provide an e approximation for any
query within a sliding window of length N, i.e., the estima-
tion Z of the counter for any query range within the sliding
window length is in the range of (1 &+ €)x of the true value
x of the counter. We will be discussing our choice for ex-
ponential histograms again in more detail in the following
section, where we will consider alternative deterministic and
randomized algorithms.

Adding an item zx to the structure is similar to the case
of standard Count-Min sketches. The process for time-based
sliding windows is depicted in Figure 1. First, the counters
CM]j, h;(zx)], where j € {1...d}, corresponding to the
d hash functions are detected. For each of the counters, we
register the arrival of the item at time ¢, and remove all ex-
pired information, i.e., the buckets of the exponential his-
togram that have no overlap with the sliding window range.
The process for count-based sliding windows is similar, but
instead of registering each arrival with system time ¢, we
register it with the count of arrivals since the beginning of
the stream.

The challenges that need to be addressed for the integra-
tion of exponential histograms with Count-Min sketches are:
(a) to take into account the additional error introduced by
the sliding window counters for deriving the accuracy guar-
antees for ECM-sketches (presented in the remainder of this
section), and, (b) to enable composition of a set of ECM-
sketches to a single ECM-sketch representing the order-pre-
serving merging of the corresponding individual streams (Sec-
tion 5).

4.1 Query Answering

We now explain how ECM-sketches support point queries,
inner product and self-join size queries, and derive proba-
bilistic guarantees for the estimation accuracy. Our analysis
covers both sliding window models, i.e., count-based and
time-based.

Point Queries. A point query (z,) is a combination of an
item identifier x, and the query range r defined either as
number of time units or number of arrivals. Point queries
are executed as follows. The query item is hashed to the d
counters CM |j, h;(x)] where (j € {1...d}), and the es-
timate of each counter E(j, h;(x),r) for the query range

Odysseas Papapetrou et al.

is computed. The estimate value for the frequency of x is

flz,r) =minj=1. 4 E(j, h;(x),7).

Let é., and €., denote the configuration parameters of
the Count-Min sketch, whereas €g,, denotes the configura-
tion parameter of the exponential histogram. With ||a,||1
we denote the number of arrivals within the query range.
The following theorem provides probabilistic guarantees for
the approximation quality for point queries and enables op-
timally setting €.,,, and €g,,. As is typical for small-space
sketches, the error guarantees are relative to the stream char-
acteristics, i.e., the L1 norm.

Theorem 1 For any € within (0,1), an ECM-sketch con-
structed with €., = 15, and €5,y = € satisfies Pr||f(z,r)—
f(z,r)| < €llar||1] = 1 — Ocm. Furthermore, the afore-
mentioned combination of €., and €, minimizes the space

complexity of the sketch.

Proof Special case of Theorem 3, with 65, = 0. O

Inner Product and Self-Join Size Queries. Another fre-
quent query type is the cardinality of the inner product. Given
two streams a and b, the inner product is defined asa ® b =
> wep fa(x) X fy(x), where D denotes the input domain,
i.e., the distinct input elements, and f,(z) (resp. fi(x)) de-
notes the frequency of element x in stream a (resp. stream
b). Self-join size queries, also called the second frequency
moment F5, are a special case of inner product queries de-
fined over a single stream: Fh(a) = > p (fa(2))?. Both
inner product and self-join size queries are very important
for databases, e.g., for building query execution plans, and
they can be efficiently and accurately estimated for streams
in both the cash register and turnstile model [29]. However,
similar to point queries, computing these queries over slid-
ing windows is challenging.

ECM-sketches can be used to address this type of queries
as well. Let a, (resp., b)) denote the substream of stream a
(resp., b) within the query range. With C' M, we denote the
corresponding ECM-sketch for stream a,., and with E, (4, j,)
we denote the estimated value of the counter of C'M,, in po-
sition (4, j), for query range 7. Also, f(z,r) and fo(z,r)
denote the real and estimated frequency of x in stream a,..

The inner product of two streams a and b in a range
r is defined as a, © b, = > p fa(,7)fo(x,r). Using
tlﬁE\CM—sketches (ia\&md b, we estigat\e it as follows:
ar ©b, = minj(a, ®by);, where (a, ©b,); = Do,
E.(i,j,7) X Ep(i, j, 7). The following theorem bounds the
approximation error.

Theorem 2 For any € within (0, 1), two ECM-sketches con-
structed with €., = €/(e+1) and €5, = e + 1 — 1 satisfy
PT’HCLT. O] br —ar © br| S E||a7"|1||b7“|1] 2 1-— 6cm~ Fur-
thermore, the aforementioned combination of €., and €gy,
minimizes the space complexity of the sketches.

Proof In the appendix.

Time-based ECM-Sketches. Exponential histograms were
originally developed for count-based sliding windows (e.g.,
count the number of true bits in the last 100 arrivals), but
they can be extended for time-based sliding windows as well
(e.g., count the number of true bits arriving in the last 1000
sec.). Our solution can handle concurrent bit arrivals as well
as arrivals at arbitrary rates, and similar to the count-based
histograms, its memory footprint (the number of buckets)
scales logarithmically with the number of arrivals within the
sliding window. First, each entry in the data structure is iden-
tified using its arrival time, instead of using its position in
the stream. To reduce memory, arrival times are stored in
wraparound counters of O(In V) bits, where N is the length
of the sliding window, e.g., in milliseconds. Second, entries
expire based on their arrival time, and not on their position in
the stream. Finally, we require an upper bound of the num-
ber of arrivals within the sliding window time range for each
stream .S, denoted as u (N, S). Note that this is required only
for computing the maximum memory requirements of the
structure a priori; it does not have an impact on the actual
required memory or quality of ECM-sketches. Furthermore,
the bound can be very loose without a noticeable change on
the estimated space requirements, because space complexity
increases only logarithmically with u(N, S).

Complexity. We use N to denote the length of the sliding
window, either in number of arrivals or in time (depending
on the desired sliding window model), and u(N, S) as de-
fined earlier. Also, g(N,S) = max(u(N, S), N); function
g is used to enable unified cost expressions for both the time-
based and count-based sliding window model.

To get an e4,,-approximation of the number of one-bits
in the sliding window, exponential histograms require
O(In N + Inln(u(N, S))) memory per bucket, to store the
bucket size and bucket boundaries. The number of buckets is
O(In(u(N,S))/€sw), yielding a total memory of
O(In*(g(N, S))/€sw). The update cost per element is
O(In(u(N, S))) worst-case, and O(1) amortized time. Que-
ries covering the whole sliding window are executed in con-
stant time. For queries with range N’ < N, the required
time is O(In(u(N,.S)/€sw)). The extra time is required for
finding the oldest bucket overlapping with the query, as-
suming sequential access. If the storage model of the buck-
ets supports random access, e.g., a fixed-length array, then
this time can be further reduced to O(In(In(u(N, S)/€sw)))
with binary search.

The space complexity of ECM-sketches is as follows.
For the Count-Min array, we require an array of width w =
[e/€cm | and depth d = [In(1/6)]. Each cell in the array
stores an exponential histogram, requiring
O(In*(g(N, S))/€sw) bits. Therefore, the total required mem-
ory is O(—t—1In*(g(N, S))In(1/5)) =

€sw€em

Sketching Distributed Sliding-Window Data Streams

O(% In?(g(N, S))In(1/5)). Concerning time complexity,
adding an element requires computing d hash functions, and
updating d separate exponential histograms. The amortized
complexity for each arrival is therefore O(d) = O(In(1/4)),
whereas the worst-case complexity is O(dIn(u(N, S))) =
O(In(u(N, S))In(1/5)). Finally, query execution takes
O(In(1/4)) time for a query of range N’ equal to N. For
N’ < N, the execution cost is O(dIn(u(N, S))/esw) <
O(In(1/6) In(u(N, S))/e) with sequential access to buck-
ets, e.g., using a linked list. With random access support,
binary search can be used for finding the last relevant bucket
for each query, reducing the query cost to

O(In(1/9) In(In(u(N, S))/€)).

4.2 Alternative Algorithms for Sliding Windows

Sliding window counters can also be materialized using other
sliding window algorithms. In the literature, two such algo-
rithms are particularly well-known: (a) deterministic waves,
and, (b) randomized waves [21]. We now show how ECM-
sketches can incorporate these algorithms, and discuss the
positive and negative aspects of each variant.

Deterministic Waves. Deterministic waves [21] have iden-
tical memory requirements with exponential histograms, and
they outperform exponential histograms with respect to worst-
case complexity for updates, requiring always constant time.
As such, the space and computational complexity of ECM-
sketches based on deterministic waves is identical to that
of sketches based on exponential histograms, with the only
difference being the worst-case update complexity, which is
O(In(1/9)).

A downside of deterministic waves is that they require
knowledge of the upper bound of the number of arrivals
u(N, S) during the initialization of the data structures, to de-
cide on the required number of queues/levels. Any overesti-
mation of u(N, S) is therefore translated to increased space
requirements — logarithmic with w(N,.S). It is important to
note that this constraint is substantially less limiting com-
pared to the constraints of previous algorithms, e.g., [35],
which required an upper bound for the total number of items
in all streams, and therefore could not be applied to dynamic
networks with an unknown number of participating nodes
and streams.

Randomized Waves. Randomized waves [21] provide (e,)
approximation for the basic counting problem, i.e., Pr[|Z —
x| < €5px] > 1 — 54, where & and z denote the estimated
and real number of true bits in the sliding window range re-
spectively. They have substantially higher space complexity
compared to their deterministic counterparts —
O(In(1/6s,)/€2,,) instead of O(1/es,,). Nevertheless, they
are important for distributed applications as they enable com-
position without causing an inflation of the worst-case error

bounds; deterministic counterparts did not originally sup-
port any composition functionality. Therefore, we also con-
sider randomized waves for integration with our ECM-sketch
structures.

Theorem 3 For any e within (0,1), an ECM-sketch con-
structed with €cm = 4, =€ and sy = O = /2
satisfies Pr]|f(z,r)— f(z,7)| < €llar|]1] = 1= 05w — Oem.
Furthermore, the aforementioned combination of €., and
€syw Minimizes the space complexity of the sketch.

68’[1)

Proof In the appendix.

The space complexity of ECM-sketches based on ran-
domized waves is derived by multiplying the space com-
plexity of the two basic structures:

(1n<1/5cm) In(1/05u) ln2(g(N, S))/(ecmeiw)) =
O (In*(6) In*(g(N, S))/€?). Inserting a new element requires
O(In(0m) In(dsy)) = O(In*(5)) amortized time, and
O(n(3om) In(3,) In(u(N, S))) = O(In®(8) In(u(N, 5)))
worst-case time. Finally, query execution takes
Oln(dr) n(0) ((u(N.S) + 1/2,) =
O(In*(8)(In(u(N, S)) + 1/€%)) with sequential access to
buckets and O(In (8¢) In(8sy) (InIn(u(N, S))+1In(1/€2,)))
= O(In*(8)(InIn(u(N, S))+1In(1/€2,))) time with random
access.

Table 2 summarizes the main results for the combination
of ECM-sketches and the three sliding window structures.
The results correspond to both time-based and count-based
sliding windows.

5 Order-Preserving Merging

For many distributed applications, such as the network mon-
itoring application described in the introduction, we require
merging of individual ECM-sketches CM;, C' Mo, ..., CM,,
each one corresponding to stream Sy, So, ..., Sy, to get
a single ECM-sketch C'Mg that corresponds to the logical
stream Sg = S1 B S2 @ ... B Sy,. The & operator is de-
fined as a merging operator that preserves the ordering and
arrival time of the events. Standard Count-Min sketches al-
low merging, as long as all sketches are constructed with
identical dimensions and hash functions. For this, they rely
on the linearity of the Count-Min counters, which are simple
integers in the general case. However, this does not trivially
hold for ECM-sketches, where the counters are not simple
numbers but complex sliding window structures, since expo-
nential histograms (as well as all other deterministic sliding
window structures), do not support this kind of merging. Al-
though randomized structures enable lossless merging (cf.
Section 5.2), they come with a substantially higher space
complexity, and are thus not preferable for ECM-sketches.
Therefore, we first consider the order-preserving merging of

Odysseas Papapetrou et al.

H Exponential Histogram

Deterministic Wave

Randomized Wave

Memory o (e% ln(%) In”(g(N, S)))
Amort. update O(In(1/9))
Worst update O(In(1/8) In(u(N, S)))
Query O(In(1/8) In(u(N, S))/e)

0 (% () (4[N, 5)))
O(In(1/95))
O(In(1/9))

O(In(1/8) In(u(N, S))/e€)

O (5 In*(8)In*(g(N, S)))
o(In2(8))
o(In2(6) In(u(N, S)))
O(1n?(8) (In(u(N, 5)) +1/¢2))

Table 2 Computational and space complexity of ECM-sketches. Function g(N, S) is used as a shortcut for max(u(N, S), N).

deterministic sliding window structures. Note that this prob-
lem is interesting in itself, since these data structures are
widely used in the literature for maintaining statistics over
sliding windows. We then extend our results to cover merg-
ing of randomized waves, and of
ECM-sketches.

For completeness, before presenting the details of our
merging algrorithm, we note that other types of merging are
also possible. For example, Gibbons and Tirthapura [21],
have considered utilizing more than one randomized waves
for generating their position-wise union, i.e., for maintaining
count-based sliding window statistics. Their scenario and
query types are fundamentally different than ours.

5.1 Merging of Exponential Histograms

Consider a set of exponential histograms FH,, FHo, ...,
FE H,,, summarizing time-based sliding windows. All are con-
figured to cover a sliding window of IV time units. The merg-
ing operation is denoted with @, i.e., EHgy = EFH,®EHo®
... ® FH,. With EHf we denote bucket j of FH;, and
|EHf | denotes the bucket size (number of true bits). By
convention, buckets are numbered such that bucket 1 is the
most recent. The ending time of the bucket is denoted as
e(EH?). To ease exposition, we use s(EH?) to denote the
starting time of the bucket, even though this is not explicitly
stored in the buckets. By construction, the starting time of
a bucket is equal to the ending time of the previous bucket,
ie,s(EH!) =e(EH! ™).

To construct 2 Hg, our methodology considers the indi-
vidual exponential histograms as logs. The basic idea is to
reconstruct X Hg by assuming that half of the elements ar-
rive at the starting time of each bucket, and the remaining
at the ending time of the bucket. Precisely, let 3 denote the
list containing all buckets of all sliding windows. We initial-
ize an empty time-based exponential histogram with error €',
configured to keep the last N time units, and a maximum of
>-i, |[EH;| elements. For each bucket BJi] € B, we sim-
ulate the insertion in EHg of |BJi]| true bits. Half of the
bits are inserted with timestamp s(B[i]), and the other half
at time e(B[i]). Insertions are simulated in the order defined
by the starting and ending timestamps of the buckets.

Theorem 4 Consider n time-based exponential histograms
FH,, EH,, ..., FH,, initialized with error parameter e,

and covering the same time range. The exponential histogram
EHg, initialized with error parameter €', and constructed
with the proposed merging algorithm answers any query
within its time range for the stream Sgq with a maximum
relative error of (€ + ¢ + e€’).

We will now give the intuition of the proof. The formal
proof is presented in the appendix. Each exponential his-
togram E H of stream .S configured with error parameter
€ can be used to reconstruct an approximate stream S’, as
follows: For each bucket b in EH, add |b|/2 true bits in
time s(b), and |b|/2 true bits in time e(b). We argue that
answering any query with starting time s, within the range
of FH using the reconstructed stream S’ will result to a
maximum relative error €. Let b; be the bucket s.t. s(b;) <
sq < e(bj). Therefore, the accurate answer « of the query
for stream S is lower bounded by | = Zf;ll |b;] + 1 and
upper bounded by h = ZZ;; |b;| + |b;|. By construction,
the reconstructed stream will contain a total of Zz;ll |b;| +
|bj|/2 items with timestamp greater than or equal to s,.
Therefore, answering the query by counting the number of
true bits in the reconstructed stream with timestamp after
s, will have a maximum error of max(h — Y270 |bi| +
b;1/2, 53925 |bs] + |bs|/2 — 1) = |b;]/2. By invariant 1 of
exponential histograms, [b;]/2 < €(1 + 23;11 |bi]) < ex.
Therefore, the maximum difference between the answer es-
timated by stream S’ and the correct answer z will be less
than or equal to ex.

Our merging algorithm is equivalent to reconstructing
each stream S] from exponential histogram FH;, and us-
ing these to recreate an exponential histogram E Hg. The
reconstruction of stream S’ introduces a maximum relative
error ¢, as explained above. Summarizing S’ with a new ex-
ponential histogram we get an additional error ¢’. However,
€' is relative on the answer provided by stream S’, and not
by S. Therefore, the absolute error due to the exponential
histogram summarization will be €'z, where 2’ € (1 + €)z
and = denoting the accurate answer on .S;. Summing both
errors, we get a total relative error of € + ¢’ + e€’.

For the special case when € = ¢, the maximum rela-
tive error becomes 2¢ + €2. Concerning space and computa-
tional complexity, FZHg, behaves as a standard exponential

Sketching Distributed Sliding-Window Data Streams

histogram, and therefore has the same complexity as pre-
sented in [16]. O

Multi-level Merging. It is frequently desired to merge slid-
ing windows in more than one levels. For example, con-
sider a hierarchical P2P network, where each peer maintains
its own exponential histogram, and pushes it to its parent
for merging at regular intervals. Since the merged exponen-
tial histograms have the same properties as the individual
exponential histograms (albeit with a higher ¢), the above
analysis also supports iterative merging of exponential his-
tograms.

There are two types of approximation error that influ-
ence the estimation of a merged exponential histogram. A
possible approximation error, denoted as erry, is introduced
due to halving of the size of the last bucket of the merged
exponential histogram. This error occurs only at query time,
and is independent of the number of performed merges. There-
fore, at a multi-level merging scenario this error does not
need to be propagated at the intermediary exponential his-
tograms. A second type of error, termed as erry, occurs due
to the inclusion (exclusion) of data that arrived before (after)
the query starting time in buckets that are accounted (not ac-
counted) in the query result.

It turns out that the error errs is additive at the worst case
(in absolute value). For instance, in the lowest level (Level 0)
of the hierarchy, merging two exponential histograms (all
with relative error €), having a true number of bits (in a given
query range) equal to ¢; and ¢o, will result at a maximum
value for erry < €(i7 + i2). In Level 1, in addition to the
previous possible errors, €(i1 +i2) + €(i3 + i4) stream items
may be incorrectly registered at the wrong side of the query
start time. A recursive repetition for h levels results to erry <
hei, where i = 3. i;. The total absolute error (including
err;) then becomes err = errs + err; < hei + €(i + hei),
resulting to a maximum relative error of he(1 + €) + €.

In many applications, the number of merging levels can
be predicted, or even controlled when constructing the net-
work topology. For example, consider DHT-based or hier-
archical P2P topologies, which typically enable a balanced-
tree access to the peers of height b = log(N), where N is
the number of nodes. In such systems, initializing the indi-
vidual exponential histograms with error ¥ 1+2h+h§2‘ dhe—1-h
yields a final merged exponential histogram of relative er-
ror e. Naturally, this causes a slight inflation of the size of
the sliding window, by O(log(V)). However, even with this
inflation, exponential histograms are — even for extremely
large networks — substantially smaller and more efficient
than randomized data structures that enable error-free merg-
ing in the expense of memory proportional to
O(In(1/8)/€?) (see also Section 5.2).

Deterministic Waves. The merging technique trivially ex-
tends for deterministic waves. Recall that each wave is com-

| EH1 | EH,
Bucket id 2 1 5 4 3 2 1
Size 1 1 8 4 2 1 1
Completion time 3 20 3 5 10 15 19
Arrivals 500 1000 || 900 950 980 990 1000

Fig. 2 An example why merging of count-based exponential his-
tograms is not possible.

posed of [levels, each covering a different range. To perform
the merging, we start from the lowest wave level [— 1, and
switch to a higher level every (1/¢ + 1)/2 bits, i.e., when
the first entry in the higher level has arrived before the next
entry in the current level. Repeating the calculation of the er-
ror bounds for the merging of deterministic waves becomes
straightforward when we notice that invariant 1 of the expo-
nential histograms is also true for deterministic waves.

Count-based Exponential Histograms. Although exponen-
tial histograms cover both time-based and count-based slid-
ing windows, merging of exponential histograms is specific
to time-based sliding windows. Count-based sliding win-
dows do not contain sufficient information for enabling order-
preserving merging. Even storing the system-wide time of
the buckets would not be sufficient to allow such a merging.
To illustrate this limitation, consider the two count-based
exponential histograms depicted in Fig. 2. For each bucket
we store the size of the bucket, the bucket completion time
and the total number of arrivals until that time. An arrival in
count-based sliding windows might be a true or a false bit.
An example query can then be: how many true bits arrived
in the last 100 system-wide arrivals. If these 100 system-
wide arrivals were read between time 19 and 20, then the
correct answer would be 1. However, it is also possible that
the last 100 system-wide arrivals have arrived between time
3 and time 20, in which case the correct answer could be
anything between 2 and 9. The information contained in the
two exponential histograms is not sufficient to estimate this
type of queries, as it only allows us to preserve the order
of the true bits, but looses the order of the false bits, which
is also important. Therefore, given only the exponential his-
tograms, it is not possible to merge them in a way that pre-
serves the ordering of both true and false bits. Deterministic
and randomized waves also have the same limitation when
it comes to order-preserving merging of count-based sliding
windows.

5.2 Merging of Randomized Waves

Randomized waves were proposed in [21] to address the
problem of distributed union counting: counting the num-
ber of I’s in the position-wise union of t distributed data
streams, over a sliding window. Even though the algorithm
of [21] can utilize more than one waves constructed at dif-
ferent nodes to answer queries, it does not consider merging
of several waves to generate a single wave. Instead, it as-

10

Odysseas Papapetrou et al.

sumes that individual randomized waves can be stored and
accessed any time, which is inconvenient for large networks.
To eliminate this assumption, we now describe a slight vari-
ation of the initial algorithm that can produce a single ran-
domized wave out of a set of individual waves, with the same
probabilistic accuracy guarantees as the individual waves.

Our algorithm simulates the construction of the merged
randomized wave RWjg, by using only the information in-
cluded in the individual randomized waves. Consider a set
‘R of randomized waves RW1, RWs, ..., RW,,, configured
to store a sliding window of N time units, with error pa-
rameters € and 0. The merged randomized wave RWg is
initialized with the same € and ¢ parameters, for storing a
maximum of Y., |[RW;| events over N time units. Each
level [of RWy, is then constructed by concatenating the
corresponding level [from all individual randomized waves,
sorting all events based on the timestamp, and keeping the
last ¢/€? events. Recall that the number of levels of individ-
ual randomized waves is determined based on the maximum
number of events in the sliding window. Therefore, it may
happen that RWg has more levels than the individual ran-
domized waves. To populate the lower levels of RWg,, we
rehash the events populating the last level of each individual
randomized wave, as proposed in [21] when merging differ-
ent levels from randomized waves.

The process of query execution and the accuracy guaran-
tees remain the same as for the standard randomized waves.

5.3 Merging of ECM-Sketches

Consider a set of ECM-sketches C My, CM,, ..., CM,
with identical dimensions and hash functions. The ECM-
sketch C'Mg with each counter set to the sum of all corre-
sponding counters from the individual sketches (as defined
by the @ operator), summarizes the information found in the
individual sketches:

To bound the estimation error, we consider the two sources
of error in the merged ECM-sketch. The error due to the
Count-Min sketch €., does not change, since it only de-
pends on the dimensionality of the Count-Min array, which
is fixed. However, the error due to sliding window estima-
tions at each counter might change with each merging. Let
€., denote the error produced by the merging of the corre-
sponding Count-Min counters, as discussed in Sections 5.1
and 5.2. If €4, and €.y, are configured according to Theo-
rem 3, it can be easily shown that €/, will always be greater
than or equal to €., /(1 — €y,). Then, the error bounds fol-
low directly by Lemma 3: | f(z,7) — f(2,7)] < €., |lar|1
with probability 1 — 0,

6 Continuous Function Monitoring with ECM-Sketches

A substantial number of distributed applications requires con-
tinuous monitoring of complex functions defined over high-
dimensional domains. For example, network administrators
frequently require to monitor the (sliding-window) heavy-
hitter IP addresses over distributed streams of network pack-
ets (e.g., received by the edge routers of the corporate net-
work), as these IPs are potentially launching a DoS attack.
ECM-sketches can be exploited in these applications, such
that each network node can compactly and efficiently main-
tain its local state, as well as effectively propagate it over
the network. In this section, we show how ECM-sketches
can leverage the geometric method [33,27], to enable con-
tinuous function monitoring.

We illustrate our technique by addressing two frequent
requirements of distributed applications: (a) monitoring items
with frequency over a user-defined threshold 7, and, (b) mon-
itoring self-join size queries. In principle, any query type
that can be answered by (a sequence of) point queries can be
monitored in the lines of the algorithm that we will present
for query (a). Some examples include hierarchical heavy
hitters, quantiles, range queries, and maximum frequency
queries (see also [11,31] for a more detailed discussion on
how centralized Count-min sketches and ECM-sketches can
address these problems using point queries). It is also straight-
forward to extend the algorithm for query (b) for inner-pro-
duct size queries.

Section 6.1 provides an introduction to the geometric
method. In Section 6.2 we introduce the integration of ECM-
sketches with the geometric method, and discuss the main
challenges that need to be addressed. Then, in Section 6.3,
we briefly discuss an algorithm for query (a). This discus-
sion serves mainly as a first, simple, example for the inte-
gration. An algorithm for query (b) is presented in more de-
tail in Sections 6.4 and 6.5. Our discussion for query (b) in-
cludes an efficient monitoring algorithm and novel theoret-
ical results to enable dimensionality reduction of the moni-
toring problem (from d x w to d), which translates to drastic
network savings and better scalability.

6.1 An Introduction to the Geometric Method

Sharfman et al. [33] consider the basic problem of monitor-
ing distributed threshold-crossing queries; that is, monitor-
ing whether f(v) < 7 or f(v) > 7 for a possibly com-
plex, non-linear function f and a high-dimensional vector v
computed as the aggregate of the corresponding local/partial
vectors {v(p1),v(p2),...,v(pn)} at a set of n sites. The
key idea of the method is, since it is generally impossible
to connect the values of f on the local statistics vectors to
the global value f(v), one can employ geometric arguments

Sketching Distributed Sliding-Window Data Streams

11

to monitor the domain (rather than the range) of the moni-
tored function f. The monitoring protocol works as follows.
Assume that at any point in time, each site p; has informed
the coordinator of some prior state of its local vector v/ (p;);
thus, the coordinator has an estimated global vector e =
+ va:l v’(p;). Clearly, the updates arriving at sites can
cause the local vectors v(p;) to drift too far from their previ-
ously reported values v’(p;), possibly leading to a violation
of the threshold 7. Let Av(p;) = v(p;) — v/ (p;) denote the
local delta vector (due to updates) at site 4, and let u(p;) =
e + Av(p;) be the drift vector from the previously reported
estimate at site p;. We can then express the current global

statistics vector v in terms of the drift vectors:
N N

N
v= o S V)t AvE) = et D Avip) = > ulm).

=1 =1 =1

That is, the current global vector is a convex combination of
drift vectors and, thus, guaranteed to lie somewhere within
the convex hull of the delta vectors around e. Fig. 3 de-
picts an example in d = 2 dimensions. The current value of
the global statistics vector lies somewhere within the shaded
convex-hull region; thus, as long as the convex hull does not
overlap the inadmissible region (i.e., the region {v € R? :
f(v) > 7} in Fig. 3) we can guarantee that the threshold
has not been violated (i.e., f(v) < 7).

The problem, of course, is that the Av(p;)’s are spread
across the sites and, thus, the above condition cannot be
checked locally. To transform the global condition into a lo-
cal constraint, we place a d-dimensional bounding ball B(e,
Av(p;)) around each local delta vector, of radius 5 || Av(p;)]|
and centered at e + %Av(pi) (see Fig. 3). It can be shown
that the union of these balls completely covers the convex
hull of the drift vectors [33]. This observation effectively re-
duces the problem of monitoring the global statistics vector
to the local problem of each remote site monitoring the ball
around its local delta vector.

More specifically, given the monitored function f and
threshold 7, we can partition the d-dimensional space to two
regions V ={v : f(v) > r}tand V = {v : f(v) < 7}.
(Note that each of these can be arbitrarily complex, e.g.,
they may comprise multiple disjoint regions of R?.) The
basic protocol is now quite simple: Each site monitors its
delta vector Av(p;) and, with each update, checks whether
its bounding ball B(e, Av(p;)) is monochromatic, i.e., all
points in the ball lie within the same region (either V, or V).
If this is not the case, we have a local threshold violation,
and the site communicates its local Av(p;) to the coordina-
tor. The coordinator then initiates a synchronization process
that typically tries to resolve the local violation by commu-
nicating with only a subset of the sites in order to “balance
out” the violating Av(p;) and ensure the monochromicity of
all local bounding balls [33]. Briefly, this process involves
collecting the current delta vectors from (a subset of) the
sites, and recomputing the minimum and maximum values

of f(v) according to the new, partial, average. If both val-
ues reside at the same side of the threshold, the coordinator
computes a slack vector for each site in the synchronization
set that shifts the local vector to the partial average. In the
worst case, the delta vectors from all NV sites are collected,
leading to an accurate estimate of the current global statis-
tics vector, which is by definition monochromatic (since all
bounding balls have 0 radius).

In more recent work, Sharfman et al. [27] show that the
local bounding balls defined by the geometric method are
actually special cases of a more general theory of Safe Zones
(SZs), which can be broadly defined as convex subsets of
the admissible region of a threshold-crossing query. Then,
as long as the local drift vectors stay within such a SZ, the
global vector is guaranteed (by convexity) to be within the
admissible region of the query.

6.2 ECM-Sketches and the Geometric Method

We are interested in domains where the local and global
statistics vectors (v(p;) and v respectively) are defined over
a user-chosen sliding window range, and are expected to
be high-dimensional, e.g., they may contain the frequency
of each item within the user-defined sliding window, for
a large number of items. Clearly, accurate maintenance of
these statistics for high-velocity data streams is computa-
tionally challenging. Furthermore, the aggregation of the lo-
cal statistics vectors in order to compute the global statis-
tics vector is costly, since it requires exchanging large vec-
tors during synchronization. Both computational and net-
work cost can be substantially reduced with a small trade-off
on quality, by using ECM-sketches. This requires the fol-
lowing modifications in the geometric method: a) sites use
ECM-sketches to approximate their local statistics vectors,
b) the global statistics/estimate vector, the local delta vec-
tors and the drift vectors, are all represented as Count-min
sketches, extracted by the ECM-sketches (at query time),
and finally, c) during configuration of the geometric method,
the query is described on top of the sketch representations of
the local and global statistics vector.

Clearly, a naive implementation of the above changes
would be subject to substantial constraints, since the size of
the domain space of geometric monitoring would be equal
to the dimensionality of the ECM-sketches (d x w), and
the geometric method is known to be inefficient in high-
dimensional domains. It is therefore imperative to reduce the
dimensionality of the problems to monitor. In the following
sections we show how this is achieved for the frequent items
query and for the self-join size queries.

Before going into further details, notice that the above
method enables concurrent monitoring of multiple queries
(not necessarily of the same type) with a single ECM-sketch
per node, which satisfies the strictest accuracy requirements

Odysseas Papapetrou et al.

Fig. 3 Estimate vector e, Av(p;) (arrows out of e), drift vectors u,
convex hull enclosing the current global vector v (dotted outline), and
bounding balls B(e, Av(p;)).

of all queries and covers the largest window. Multiple in-
stances of the geometric method (in the simple case, one
per query), could then be executed in parallel, coordinat-
ing the synchronization process to reduce network cost. The
network cost for monitoring the queries is determined by
the network requirements of the geometric method, i.e., it
depends mainly on the stability of the answer and the ac-
ceptable error parameter 6. Fully analyzing all query types,
examining the involved challenges, and exploiting the paral-
lel execution of the queries for network and computational
benefits is an interesting open problem, and part of our fu-
ture work.

6.3 Monitoring Frequent Items

Let p1, po, ..., pn denote all n network nodes, Sy, So, ...,
Sy, their corresponding streams, and Sy the order-preserving
union of these streams. We use D to denote the domain of
So, i.e., all distinct items appearing in the stream, and .S; ,
the sub-stream of S; within query range r. The algorithm
addresses the problem of distributed continuous monitoring
of the set 7 of items with frequency in Sy, greater than a
user-chosen threshold 7. It works by decomposing the prob-
lem to a set of smaller individual problems, one for each
distinct item occurring in the stream, yet without requiring
the knowledge of all distinct items a priori.

The user first selects the frequency threshold 7, the de-
sired accuracy of ECM-sketches (§ and €), and an acceptable
error parameter § > 0 that defines the error tolerance of the
geometric method algorithm, i.e., it is acceptable for the al-
gorithm to misclassify items with frequency in the range of
7(1 &+). At initialization time ¢, each site p; constructs
an empty ECM-sketch EC'M; to be used as its local statis-
tics vector, and an empty Count-min sketch C' M (() to be
used as the reference vector (we drop the site id from the
notation since the reference vector is always identical at all
sites). Both sketches are of the same size d x w, and are ini-

tialized with identical hash functions at all sites. After ini-
tialization, sites enter the monitoring phase: For each item
x € D, we define a d-dimensional threshold-crossing query
as the boolean condition:

Ffv(t,z)) >7(1 = 0)if f(v(to,z)) <T

Qf,v,z,70) = {f(v(t,x)) <7(1+0)if f(v(to,x)) > 7

with function vector f : R? — R defined as f(v) = n x
min?:1 v[4]. The d-dimensional vectors v (¢, z) and v (to, x)
are extracted by ECM,; and CM respectively, as follows.
v(t)[j] = Ei(j, hj(x),r) (the estimation from the counter
of EC'M; at position (j, h;(x))) and v(to)[j] = CM][j, h;(z)]
(the value of the counter of the reference Count-min sketch
at position (7, h;(x))).

Using the geometric method, sites monitor the threshold-
crossing queries in order to detect item arrivals or expira-
tions that potentially invalidate the set of estimated frequent
items]:'I . An arrival of any item z is handled as follows.
First, the local ECM-sketch is updated to include the arrival.
If x is already frequent, nothing else needs to be done. In the
opposite case, the site probes the corresponding threshold
query Q(f,v,x, 7, 0), initiating a synchronization if thresh-
old crossing occurs. Notice that, for synchronization, the
coordinator needs to collect only the values of the ECM-
sketch counters corresponding to x, i.e., E(j, hj(z),r) for
j = 1...d, in order to update the reference Count-min
sketch and decide whether the item causing the violation is
frequent. The actual sliding window structures do not need
to be exchanged.

Counter updates due to expirations are slightly more com-
plicated (these could cause the removal of a frequent item
from f:). The technical challenge comes from the fact that a
bucket expiration at the sliding window of any counter from
the ECM-sketch may affect many items, introducing com-
putational complexity. One approach would be to have each
site execute the threshold crossing queries for all frequent
items at regular intervals. To reduce computational complex-
ity, each site p; instead maintains a balanced binary search
tree that contains all counters of EC M; and the set of fre-
quent items corresponding to each counter, ordered by the
expiration time of their oldest bucket. This tree enables p; to
quickly detect (in constant time) whether any of the counters
of EC'M; contains expired buckets, and test only the rele-
vant threshold-crossing queries. The quality guarantees and
memory footprint of the above algorithm are summarized by
the following lemma.

Lemma 1 The algorithm guarantees that with probability
greater than or equal to 1 — 9, any item x contained in .7:':
has a real frequency in Sy - greater than (1—0)7—¢€||So ,||1,
whereas any item x not contained in]:'; has a real frequency
less than (1+0)7 +€|[So,r||1. The algorithm requires mem-
ory of O(% In(}) In*(|[rl1) + | F2]).

Sketching Distributed Sliding-Window Data Streams

13

6.4 Monitoring Self-Join Size Queries

In the previous case, the problem to be monitored was al-
ways d-dimensional, with a small d (d < 5 for 6 > 0.01).
As such, the geometric method was able to bound the con-
vex hull using relatively small balls, effectively filtering out
local updates. Furthermore, threshold violations could be re-
solved by exchanging only d counters. Estimation of the
self-join size, however, involves all d X w counters, with
(d x w) typically in the hundreds. A naive application of the
geometric method for self-join size monitoring would there-
fore require exchanging d x w counters at each threshold
violation. The problem is further aggravated by the high di-
mensionality of the bounding balls (equal to the number of
counters), which increases the frequency of threshold cross-
ings.

Our attack to this problem is twofold. First, we adapt a
recently-proposed insight [18] that enables us to reduce the
problem to d dimensions, by monitoring upper and lower
bounds of the self-join size estimate instead. This adapta-
tion includes repeating the analysis of [18] for the ECM-
sketch (monitoring the min instead of the median, and pro-
viding error guarantees relevant to the stream length). How-
ever, the bounds offered by this method alone turn up to be
quite loose when it comes to ECM-sketches, causing fre-
quent threshold crossings. Therefore, we offer a new, sec-
ond, approach that further tightens these bounds by exploit-
ing the sliding-window property of ECM-sketches. Com-
pared to the first approach, the second approach drastically
reduces the number of threshold crossing, enabling substan-
tial network gains.

We initiate the discussion with some basic notation. Let
r denote the query range, and v;(¢) the Count-min sketch
extracted by the ECM-sketch of node p;, with each counter
computed as v, (¢)[row, col]
LS vi(t) (the average of v;(t)). Function f(v) corre-
sponds to the self-join size estimate function with Count-
min sketches, i.e., f(v)

|[vi(t)[row] — vi(to)[row]||, and d = L 3" | d,. The fol-
lowing lemma enables us to extract d-dimensional threshold-
crossing queries:

Y

Lemma2 /f min? {M d[row]}

% f(yité))) and mln d {HV(to [row]|| + d[row]} <
1

\/m then f(v(to)) € (1£0)f(v(?)).

Proof In the appendix.

' The geometric method is trivially extended to handle matrices in-
stead of vectors by applying vectorization on the matrices, and adjust-
ing the monitored function to use the corresponding vector dimensions.
We use the matrix notation for the sketches only for convenience.

= E;(row, col,r).! Also, v(t) =

= mingou}:l Z:)olzl (v[row, CO”)2'
Finally, d; is the d-dimensional vector computed as d;[row] =

Since d is a convex combination (the average) of the
distributed values d;, we can already exploit the geometric
method to monitor the self-join size estimate. This can be
achieved by deﬁning two queries, the first (Q,) for upper-
bounding min?_, {| |v(t0) [7]|| — nd]i]}, and the second (Q;)
for lower-bounding min?_, {||v(to)][i] [i]}. A key ob-
servation, however, is that the definition of d does not ac-
count for the direction of each update: any update of a counter
on a local ECM-sketch that shifts a counter away from its
last synchronized value (either decreasing the counter value
due to an expiration of a bucket, or increasing the value due
to a new arrival) will lead to an increase of d. This, however,
results in unnecessary threshold crossings. For example, an
increase of a counter at a peer p; may lead to a threshold
crossing on the lower-bound threshold query, even though
in practice an increase of the counter can only lead to an
increase of the self-join size.

To circumvent this problem we introduce two auxiliary
matrices per peer, one for the upper bound that includes only
the counter shifts which increase the counters’ values since
last synchronization, and another with the shifts that de-
crease the counters’ values. Formally, for the upper bound,
v¥(t)is computed as: v¥ (t)[row, col] = max(v;(t), v;(tg)),
and for the lower bound v (t)[row, col] = min(v;(t), v;(to))-
Similarly, d; = ||[v¥(t)[row] — v(t)[row]|| and
d, = ||vi(t)[row] — v(to)[row]||. d“ and d' are the cor-
responding averages over all nodes. Then, we can show the
following:

Theorem 5 If min? _ 1{M — d'frow]} >
Fv) nd min® {HV to)[TOlU]H + d'[row]} <

% 1+0
2 ISR, then f(v(to)) € (1 £0)F(v(1)).

Proof In the appendix.

This leads to the following threshold crossing queries
(the queries become true when threshold violation occurs):

Qu(.f7 du,V, 9) = nghzll{du[row] + HV(tU)TErO’w]H} > % f(lvft;))
and for the lower bound:
Q (f dl V. 9) — Tg’ilnl{ HV(ILO)[TOU)}H dl[7()’ll}}} < - -f(lvjfg))

Synchronization. A two-phase synchronization algorithm
is used to handle threshold violations. Without loss of gen-
erality we will demonstrate the algorithm assuming a thresh-
old violation in @, (the case of (); is analogous). In a first
phase, all nodes p; send their local values of d;' to the coor-
dinator in order to compute the accurate average value d".
If the updated d"“ no longer causes threshold violation, it is
sent back to all nodes to be used in the monitoring algo-
rithm. However, if this first phase is not sufficient to address

14

Odysseas Papapetrou et al.

the threshold violation, the coordinator collects also the lo-
cal values of v;(t), recomputes the average value v(¢) and
the updated self-join size, and reinitializes the monitoring al-
gorithm with the updated values. Both phases can be further
extended such that synchronization stops as soon as balanc-
ing between the retrieved vectors is possible, as explained
in Section 6.1. The first phase has a network cost (in trans-
fer volume) of O(d x n) = O(nlIn(1/4)), whereas the cost
of the (more infrequent) second phase is O(d X w x n) =
O(nln(1/6)/e).

6.5 Efficient Monitoring of the Minimum

The previous discussion has abstracted away the details of
the geometric monitoring of functions containing the mini-
mum. In principle, the standard geometric monitoring algo-
rithm can be used, as described above. However, the nature
of the monitored function enables substantial optimizations.
We distinguish two types of queries: (a) the queries where
the last estimate vector is located above the threshold, and
(b) the queries where the last estimate vector is below the
threshold.

For the first type of queries, we will use as a running
example the query @;, introduced in Section 6.4 (the same
principles apply to the queries introduced in Section 6.3 that
correspond to frequent items). The admissible region of the
monitored vector in this query is already convex (i.e., in two
dimensions, this will be the L-shaped area above the thresh-
old). Hence, the monochromicity test becomes fairly simple:
a node p; reading an update only needs to test whether the
local value of dé stays within the convex admissible region,
in which case the update is guaranteed to be safe.

Query @, and the queries from Section 6.3 correspond-
ing to infrequent items belong to the second type of queries.
For these queries, the admissible region is non-convex. How-
ever, the inadmissible region is now convex, and we can ap-
ply a different technique based on convex safe zones [27]: In
the absense of statistics for the velocity and direction of d*,
we choose the safe zone such that it maximizes the slack in
all dimensions, as follows. First, we find the point p of the
inadmissible region that is closest to @ It is easy to show

v(to) 1
n ’ n

that this point is p[i] = max < A (I'ftg))) Then,

we find the hyperplane H passing from p that is perpendic-
ular to vector (p — %) (see Fig. 4 for a two-dimensional
illustration of this process). Hyperplane H divides the d-
dimensional space to two convex subspaces. By construc-
tion, the one of the two subspaces (in the two-dimensional
example, the subspace in the right of H, denoted with R)
contains the inadmissible region and possibly some admissi-
ble area, whereas the second subspace (denoted with L) con-
tains only admissible area w.r.t. query (),,. Since L is con-
vex, it can be used as a safe zone for the geometric method.

inadmissible
region

subspace \subspace

Fig. 4 Monitoring of the minimum for @, with safe-zones. The in-
admissible region is fully covered by the R subspace (yellow). The L
subspace (green) can be used as a safe zone for v(tg)/n + d“.

In particular, after each update, nodes only need to check
whether v(to)/n + d" is still within L. This is guaranteed
to be the case whenever v(to)/n + d remains within L for
all nodes 7. The computational complexity for this process is
only O(d) = O(In(1/6)) for computing the hyperplane and
checking whether d' is still in the safe zone.

7 Experimental Evaluation

Our experiments focused on evaluating ECM-sketches with
respect to their scalability, effectiveness, and efficiency, as
well as their suitability for distributed setups. The experi-
ments were conducted using two large real-life data sets, the
world-cup’98 [2] (wc98) and the CAIDA Anonymized Inter-
net Traces 2011 data set (caida®). The wc98 data set consists
of all HTTP requests that were directed within a period of 92
days to the web-servers hosting the official world-cup 1998
website. It contains a total of 1.089 billion valid requests,
served by 33 server mirrors. Each request was indexed us-
ing the web-page url as a key, i.e., the ECM-sketch could
be used for estimating the popularity of each web-page. The
caida data set consists of Internet traces collected by passive
monitors installed in Chicago and San Jose. For this exper-
iment we have used the subset of data collected from the
Chicago monitors in 17th February 2011, which contained a
total of 345 Million IPv4 packets. Each packet was indexed
using the source’s IP address. Therefore, the ECM-sketch
enabled estimating the number of packets sent by each IP
address.

We compared three sketch variants, differentiating on
the employed sliding window algorithm: (a) the default vari-
ant described earlier which is based on exponential histograms,
denoted as ECM-EH, (b) a variant using deterministic waves
(ECM-DW), and, (c) a variant based on randomized waves
(ECM-RW). Comparison between the variants was performed
to examine the influence of the sliding window algorithm
to the performance of ECM-sketches, in both centralized

2 Available from http://www.caida.org/data/

Sketching Distributed Sliding-Window Data Streams 15
| ECM-EH ECM-DW ECMRW Point queries ECM-EH Self join ECM-EH ECM-RW

wc98 € Dataset || Centr.:Distr. Inc.rate | Centr.:Distr. Inc.rate | Centr.:Distr.
Uplaterae | 4343099 6067130 70468 G105 0015000 1114 | 0015009 1059 | 007001
caiday 0.2 wc98 0.034:0.040 1.181 0.034:0.037 1.092 0.031:0.031
0.1 caida 0.020:0.021 1.043 0.020:0.020 1.018 0.018:0.018

Update rate || 5344982 6205999 72778 . : ; :
Query rate 2377502 3827267 15108 0.2 caida 0.038:0.041 1.079 0.037:0.039 1.042 0.034:0.034

Table 3 Indicative update and query rates (per sec-

ond) for the centralized setup 1ne:

and distributed environments. Comparison with ECM-RW
was of particular interest, since randomized algorithms for
sliding window maintenance (such as the randomized waves

employed by ECM-RW) were the only ones supporting merg-

ing prior to this work. Therefore, examining the performance
of ECM-RW experimentally also serves the purpose of ex-
amining the importance of the merging mechanism for de-

terministic sliding window algorithms, proposed in this work.

7.1 Implementation Details

ECM-sketches were implemented in Java 1.7 using 32-bit
addressing. The timing experiments were executed on a sin-
gle idle core of an Intel Xeon E5-2450, clocked at 2.1 GHz.
For the wc98 data set, deterministic and randomized waves
were initialized with an upper bound of 1000 events per
second, whereas for the caida dataset we have used an up-
per bound of 1000 events per millisecond. In practice, it is
rarely possible to predict the maximum number of events per
sliding window, and therefore such estimates (typically de-
cided by analyzing a small stream sample) are often the only
option. Exponential histograms did not require such knowl-
edge at initialization time.

Particularly for randomized waves, Gibbons and Tirtha-
pura [21,20] explain that a correctness probability of 1 —d,,,
requires the parallel maintenance of ¢lns(1/ds,,) indepen-
dent instances of the data structure, where the constant ¢ =
36 is determined by worst-case analysis. This number of rep-
etitions, in combination to the space complexity of each in-
stance (c/€2,,), can make the exchange of randomized waves
over a distributed network extremely inefficient — hence the
importance of the ability to merge deterministic data struc-
tures that is proposed in this article. Notice however that,
as suggested in [20], smaller constants may also be used
in practice in order to reduce the space and computational
complexity. This, of course, comes at the cost of meaning-
less worst-case guarantees. In the following experiments, we
set ¢ = v/36 = 6, which reduces the cost by a factor of 36,
but still offers an empirical estimation accuracy that is com-
parable to the one of deterministic sliding window structures
configured with the same e.

Unless otherwise mentioned, ECM-sketches were set to
monitor a sliding window of 2 million time units. For wc98,

Table 4 Observed errors and error increase rate — inflation is due to the iterative merg-

this corresponded to 2 million seconds, i.e., 23 days, whereas
for caida, it corresponded to 2 million microseconds, i.e.,
33 minutes. Queries smaller than the sliding window were
executed as well, using the same ECM-sketches. In partic-
ular, queries were generated with an exponentially increas-
ing range, i.e., query ¢; covered the range [t — 10%,¢], with
t denoting the time of the last arrival. For each range, a
self-join size query, as well as a set of point queries were
constructed and executed. For thorough evaluation, we con-
structed one point query for each distinct item in the query
range (i.e., estimating the popularity of each web-page in
the wc98 dataset, or the number of packets sent by each IP
address in the caida dataset).

7.2 Centralized Setup

In the centralized scenario, a single site monitors the whole
stream and maintains an ECM-sketch, which is subsequently
used for answering the queries. We first consider the trade-
off between memory requirements and estimation error. For
this, we vary e within the range of [0.05, 0.3], keeping 6 =
0.15. For each ¢ value, we use the analysis presented in Sec-
tion 4 for point and self-join size queries to configure the
ECM-sketch, such that the required memory for the targeted
query type is minimized.

Figures 5(a)-(d) plot the average and maximum observed
error in correlation to the required memory for the two data
sets. The plots are annotated with indicative € values. The
displayed error at the Y axis is relative to the number of
events arriving within the query range, i.e., for point queries,
err = |f(z,r) — f(z,7)|/||a,|]1 and for self-joins, err =
lar ® ar — ar ® ar|/(||ar||1)?. Recall that ECM-RW does
not allow probabilistic guarantees for self-join size queries,
and is therefore not considered for this type of queries. Ta-
ble 3 presents indicative update and point query rates for the
considered sketches.

We first observe that both the average and maximum ob-
served errors are lower than the user-selected value € for all
ECM-sketch variants. However, the memory requirements
of ECM-RW are typically two to three orders of magnitude
higher than the requirements of ECM-sketches based on the
two deterministic structures configured with the same €. As
an example, for the wc98 experiment with a moderate value

Odysseas Papapetrou et al.

0.08 , : : : : :
. 0.06 1
o
3]
Lo [}
¢ 0.04 R 1
§ °
[J
© 0.02 . ~
[J
0.00 : : : : : :
0.001 0.01 01 1 10 100 1000 10000
Memory (Mbytes)
0.08 , : : : : :
. 0.06)
e
5 []
° []
g 0.04 1
) [J
3 o
© 0.02 .]
[}
0.00 : : : : : :
0.001 0.01 01 1 10 100 1000 10000
Memory (Mbytes)
Point queries: EH + DW[] RW e

Maximum observed error

Maximum observed error

0.14 ; ; ; : . .
0.12
0.10
0.08
0.06
0.04
0.02

!

0.00 ‘ ‘ ‘ ‘ .
0.001 0.01 01 1 10 100 1000 10000
Memory (Mbytes)

0.14 ; :

0.12
0.10
0.08
0.06
0.04
0.02

!

OOO L L L L L
0.001 0.01 01 1 10 100 1000 10000
Memory (Mbytes)

Self-join size queries: EH —— DW --&- -

Fig. 5 Average and maximum observed error in correlation to memory requirements for a centralized setup: (a)-(b) wc98 data set, (c)-(d) caida

data set. The points correspond to e € {0.05,0.1,0.15,0.2,0.25,0.3}.

of ¢ = 0.15, the cost of maintaining the ECM-RW sketch
is 48.8 Mbytes, whereas ECM-sketches based on exponen-
tial histograms and deterministic waves require 22 Kbytes
and 50 Kbytes respectively. This happens because the mem-
ory requirements of randomized waves grow quadratically
with 1/e, whereas the two deterministic sliding window al-
gorithms scale linearly. Note that this negative result ap-
plies to all known randomized sliding window algorithms,
e.g., [35,14], since they all scale quadratically with 1/e. As
such, ECM-sketches based on deterministic structures are
more applicable for scenarios with hardware with less mem-
ory, like sensor networks and network devices. Also note
that ECM-RW are substantially slower than ECM-EH and
ECM-DW, supporting two orders of magnitude lower up-
date and query rates (cf. Table 3).

Focusing on the two structures with deterministic sliding
windows, we see that ECM-EH sketches are substantially
more compact, requiring around one third of the space of
ECM-DW for the same e value. Concerning computational

performance, both structures can support comparable update
and query execution rates (ECM-DW is slightly faster than
ECM-EH, mainly due to its O(d) worst-case complexity per
update, compared to O(dlog N) for ECM-EH). The results
are consistent for both data sets.

Summarizing, these first results demonstrate the supe-
riority of ECM-EH and ECM-DW compared to ECM-RW,
both in terms of compactness and computational performance.
ECM-EH and ECM-DW have comparable computational per-
formance, whereas in terms of compactness ECM-EH sub-
stantially outperforms ECM-DW.

7.3 Distributed Setup

The second series of experiments was designed to evalu-
ate the suitability of ECM-sketches for distributed setups,
and precisely: (a) for setups requiring one-time merging of
ECM-sketches, possibly even in a hierarchical fashion, and

Sketching Distributed Sliding-Window Data Streams 17
0.10 , , , , 0.10 , , , ,
(a) (b)
0.08 1 1 0.08 1
S 0.3 S 0.3
 0.06 | 1 ®©o06| "]
o + o +
() (0] []
e ° S o
@004 + ° 1 o004 * 1
2 + ° e + i
O ° o °
0.02 ¢ + ° 1 0.02 ¢ + ° 1
€=0.05 * €=0.05 *+
0.00 : : : : 0.00 : : : :
0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000
Transfer volume (Mbytes) Transfer volume (Mbytes)
Point queries: EH + RW e Self-join size queries: EH ——

Fig. 6 Observed error in correlation to the network cost, for varying e: (a) wc98 data set, (b) caida data set.

(b) for setups requiring continuous monitoring of functions
through distributed ECM-sketches.

7.3.1 One-time Merging

These experiments focused on studying the influence of the
network size and € on the network cost. We have simulated a
fixed network of n € [2, 256] sites, organized in an architec-
ture resembling a balanced binary tree of height [log,(n)].
All sites resided at the leaf nodes of the tree, and were as-
signed the task of summarizing disjoint streams with ECM-
sketches. Some of the sites were also randomly placed at
the internal tree nodes, and were responsible for merging
the sketches coming from their children. After completion
of the streams, the sites pushed the resulting ECM-sketches
to the root through the hierarchy, with merging at each in-
termediary node. At the end of this process, the root node of
the hierarchy was holding a single ECM-sketch that repre-
sented the order-preserving merging of the n streams. ECM-
DW sketches are not considered in this set of experiments,
since they do not offer advantages compared to ECM-EH
sketches with respect to compactness or accuracy.

Figures 6(a)-(b) plot the average observed error for point
and self-join size queries in correlation to the network re-
quirements for the whole merging process to be completed.
The results correspond to a fixed network of 16 sites, with
e € [0.05,0.3] and 6 = 0.15. (Note that the simulation
with ECM-RW sketches did not complete for e = 0.05 val-
ues, due to insufficient memory resources at the machine
simulating the sites.) To illustrate the accuracy loss due to
this merging, Table 4 presents a comparison between the
observed error of the centralized and the distributed ECM-
sketches.

As expected, the process of iterative mergings causes an
inflation of the observed error for ECM-EH sketches. This

inflation, however, is very small, and substantially lower than
the theoretical worst-case bound derived by the analysis. For
example, for the wc98 dataset with e = 0.1, the average
observed error after all mergings is 0.020, whereas the cen-
tralized ECM-EH has an observed error of 0.018, i.e., the
error inflation caused by the iterative ECM-EH mergings
is less than 1/8 of the experimentally derived error of the
centralized sketch. Concerning ECM-RW sketches, there is
no systemic variation of the error, since randomized waves
enable lossless merging at the expense of a larger memory
footprint. However, the network required for performing this
merging using ECM-RW is at least three orders of magni-
tude higher. This requirement is prohibitive for a large set
of application scenarios, like sensor and mobile networks,
where high network usage causes severe battery drainage.

To explore the influence of the network size on the esti-
mation accuracy and network cost, we have also simulated
networks of n sites, with n = {2,4,...,256}. (For the case
of ECM-RW, the number of sites reached only up to 64 due
to memory constraints at the machine executing the simu-
lation.) The sites were again placed as leaf nodes on a bal-
anced binary tree, and updates were assigned to the sites ran-
domly, with equal probability. Figures 7(a) and (c) plot the
average observed error in correlation to the network size, for
€ = 0 = 0.15. As expected, for ECM-EH sketches, increas-
ing the number of sites leads to a small increase on the ob-
served estimation error, whereas the accuracy of ECM-RW
sketches remains unaffected. However, similar to the previ-
ous experiment, the network cost for merging the sketches
based on randomized waves (Figures 7(b) and (d)) is three
orders of magnitude higher compared to ECM-EH. This lim-
its the applicability of ECM-RW to cases where fast, fixed
network is available, and makes the ability to merge de-
terministic sliding windows, e.g., based on exponential his-
tograms, a very important contribution of this work.

Odysseas Papapetrou et al.

0.06 T T T T T T T
(a)
. 0.05 1
o
o
?
> 0.04 ;]
3 +
5 fo
003 4+ * -]
® [} [} [] [} []
002 L L L L L L L
2 4 8 16 32 64 128 256
Number of nodes
0.06 - - - - - - -
©
« 0.05 :/‘/'/‘//‘A
o
o |
?
2 0.04 1
(O]
3
o 0.03 T + + * - + + |
[] [] [] [] [
0.02 L L L L L L L
2 4 8 16 32 64 128 256

Number of nodes

Point queries:EH + RW e

10000 ; , , : , : :

T
[]
L

1000

100 ¢ ® 1

Transfer volume (Mbytes)

0.01 : : : : : : :
2 4 8 16 32 64 128 256
Number of nodes
10000 . . : . ; : .
@ .
1000 ¢ o E
[]
100+ ® 1

Transfer volume (Mbytes)

0.01 : :
2 4 8

16 32 64
Number of nodes

128 256

Self-join size queries: EH ——

Fig. 7 Observed error and network cost for different network sizes: (a)-(b) wc98, (c)-(d) caida.

Summarizing, this set of experiments showed that ECM-
sketches based on exponential histograms can be merged
with very small information loss. Compared to the lossless
merging of ECM-sketches based on randomized waves, ECM-
EH are substantially more compact, and are therefore ap-
plicable for a wider range of application scenarios, where
network cost and/or memory is of the essence, such as P2P
networks, sensor networks, and network routers.

7.3.2 Continuous Monitoring

The final set of experiments investigates the suitability of
ECM-sketches in combination with the geometric method
for distributed continuous monitoring, as discussed in Sec-
tion 6 (denoted as A, hereafter). Particularly, we consider
monitoring of the self-join size of a high-dimensional vec-
tor v that corresponds to sliding window statistics (i.e., item
frequencies) aggregated over n data streams S1, So, . .., Sy.
Each stream .S; is monitored by site p;, and all sites are en-
abled direct communication with a coordinator. Estimating
the self-join size of such high-dimensional vectors is fre-

quently useful, e.g., for query optimization in distributed
databases, data partitioning, and computing a variety of use-
ful indexes for streams (see [1] for a discussion). We only
consider ECM-sketches constructed with exponential his-
tograms, since these offer the best trade-off between mem-
ory and accuracy. As a baseline, we use the centralized algo-
rithm (denoted as A..,,), which relies on a central coordina-
tor for collecting all updates from the remote sites and main-
taining the accurate self-join size. Notice that A, has sev-
eral practical considerations besides the high network cost,
i.e., the coordinator still needs to efficiently maintain the
high-dimensional statistics over a sliding window, which is
challenging to achieve without ECM-sketches. Yet, we ig-
nore this issue for our experiments. Both algorithms were
allowed a warm-up phase (until the sliding window filled up
for first time) before starting to measure cost and quality.

Figure 8(a) presents the transfer volume required by A.c,
for different network sizes as a ratio of the corresponding
transfer volume of A..,,. The results correspond to a config-
uration of A..,,, with § = € = 6 = 0.15. Clearly, A¢cp, is
substantially more efficient than the baseline, enabling net-

Sketching Distributed Sliding-Window Data Streams 19
0.5 T T T () T T T 0.048 (b) T 0.005
a ®
—~ 2 N IR S o - VS S— —~
S 04t I o047) o OTTO OO0 3 0004
@ / 5 @ 2
g 03t} T 0.046 g 0003
3 3 3
S 2 S
@ 0.2 § 0.045 i) 0.002 -
g ° g
g oo1r 0.044 S 0001 |
08 —B— @@ 0.043 —— 0 ‘ ‘ ‘ :
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256 005 01 015 02 025 03
Number of nodes Number of nodes Accuracy parameter 6
Data sets: wc98: —x— caida:

Fig. 8 (a)-(b) Network cost and observed error for different network sizes, (c) Effect of the value of 6.

work savings of up to two orders of magnitude for networks
up to 32 sites. As expected, increasing the network size leads
to an increase of the communication cost of A..,, (the cost
of A.e,, does not change). This is a known characteristic of
the geometric method. Nevertheless, even for the network of
256 sites, Aecm, still requires less than half the cost of A,
We also see that caida is slightly more difficult to monitor
compared to wc98. This is because wc98 is more stable than
caida, i.e., as soon as the sliding window is filled, self-join
size changes very slowly. Caida data set, on the other hand,
is by nature more dynamic, causing more frequent threshold
violations, and a higher network cost.

The average observed error for the same runs is shown
in Figure 8(b). Even though error slightly increases with net-
work size, the increase is negligible, and the error always
remains smaller than the value of parameter 6, i.e., the error
tolerance of the geometric method. All results are consistent
for both data sets.

We have also tested the sensitivity of A, on param-
eter 6. The results in Figure 8(c) correspond to a fixed net-
work of 16 sites, with ¢ and € set to 0.15. As expected, in-
creasing 6 drastically reduces the network cost of the algo-
rithm: for a higher 6, A..,, causes less threshold crossings,
requiring less synchronizations of both phases. As an indi-
cation, for the caida dataset and for § = 0.05, A, required
7133 first-phase synchronizations (i.e., synchronizations on
d,,|d; only) and 2694 second-phase synchronizations (on the
full sketches). For 8 = 0.3, these synchronizations were re-
duced to 5637 for the first phase, and only 457 for the second
phase.

Summarizing, the experiments have shown that the com-
bination of ECM-sketches with the geometric method can be
used for efficiently monitoring of non-linear functions, such
as the self-join size, in distributed settings. The network sav-
ings are substantial compared to the baseline algorithm that
forwards all updates to a central coordinator, and typically
exceed two orders of magnitude for small networks, whereas
the observed error is negligible.

8 Conclusions

In this work we considered the problem of answering com-
plex queries over distributed and high dimensional data
streams, in the sliding window model. Our proposal, ECM-
sketches, is a compact structure combining the state-of-the-
art sketching technique for data stream summarization with
deterministic sliding window synopses. The structure pro-
vides probabilistic accuracy guarantees for the quality of the
estimation, for point queries and self-join size queries, and
can enable a broad range of problems, such as finding heavy
hitters, computing quantiles, and answering range queries
over sliding windows.

Focusing on distributed applications, we also showed
how a set of ECM-sketches, each one representing an in-
dividual stream, can be merged to generate a single ECM-
sketch that summarizes the stream produced by the order-
sensitive merging of all individual streams. Interestingly, this
is the first result in the literature enabling such merging for
deterministic sliding window synopses (or sketches based
on these), and it is of high importance since deterministic
synopses are generally a factor of O(log(1/)/€) more com-
pact than the best-known randomized synopsis for deliver-
ing an e-accurate approximation. In the same context, we
demonstrated how ECM-sketches can be exploited within
the geometric method for answering continuous queries de-
fined over sliding windows.

ECM-sketches were thoroughly evaluated with a set of
extensive experiments, using two massive real-world datasets,
and considering both centralized and distributed setups. The
results verified the high performance of the structure. Com-
pared to structures based on randomized sliding window syn-
opses, ECM-sketches improve the memory and computa-
tional complexity by at least one order of magnitude. The
same magnitude of improvement is observed with respect to
the network requirements.

Our future work will focus on further optimizations for
continuous distributed queries. Two interesting open prob-
lems include considering other query types, and concurrently

20

Odysseas Papapetrou et al.

executing multiple continuous queries. In Section 6 we have
already discussed initial optimizations for concurrent execu-
tion of many queries. We expect that both computation and
network complexity can be reduced further by coordinating
the synchronization process between the queries, and taking
the accuracy requirements of each query into account during
the synchronization process.

Acknowledgments. This work was supported by the Eu-
ropean Commission under ICT-FP7-LEADS-318809 (Large-
Scale Elastic Architecture for Data-as-a-Service) and ICT-
FP7-FERARI-619491 (Flexible Event pRocessing for big
dAta aRchltectures).

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of ap-
proximating the frequency moments. J. Comput. Syst. Sci. 58(1),
137-147 (1999)

2. Arlitt, M., Jin, T.: A workload characterization study of the 1998
world cup web site. Network 14(3), 30 —37 (2000)

3. Busch, C., Tirthapura, S.: A deterministic algorithm for summa-
rizing asynchronous streams over a sliding window. In: STACS,
pp. 465-476 (2007)

4. Chakrabarti, A., Cormode, G., Mcgregor, A.: A near-optimal al-
gorithm for estimating the entropy of a stream. ACM Trans. Al-
gorithms 6(3), 51:1-51:21 (2010)

5. Chan, HL., Lam, T.W,, Lee, L.K., Ting, H.F.: Continuous moni-
toring of distributed data streams over a time-based sliding win-
dow. Algorithmica 62(3-4), 1088-1111 (2012)

6. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items
in data streams. In: ICALP, pp. 693-703 (2002)

7. Cohen, E., Strauss, M.J.: Maintaining time-decaying stream ag-
gregates. J. Algorithms 59(1), 19-36 (2006)

8. Cormode, G., Garofalakis, M.: Approximate continuous querying
over distributed streams. ACM Trans. Database Syst. 33(2) (2008)

9. Cormode, G., Garofalakis, M., Muthukrishnan, S., Rastogi, R.:
Holistic aggregates in a networked world: Distributed tracking of
approximate quantiles. In: SIGMOD, pp. 25-36 (2005)

10. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not:
Tracking most frequent items dynamically. In: PODS, pp. 296—
306 (2003)

11. Cormode, G., Muthukrishnan, S.: An improved data stream sum-
mary: the count-min sketch and its applications. J. Algorithms
55(1), 58-75 (2005)

12. Cormode, G., Muthukrishnan, S., Yi, K., Zhang, Q.: Optimal sam-
pling from distributed streams. In: PODS, pp. 77-86 (2010)

13. Cormode, G., Muthukrishnan, S., Yi, K., Zhang, Q.: Continuous
sampling from distributed streams. J. ACM 59(2), 10:1-10:25
(2012)

14. Cormode, G., Tirthapura, S., Xu, B.: Time-decaying sketches for
robust aggregation of sensor data. SIAM J. Comput. 39(4), 1309—
1339 (2009)

15. Cormode, G., Yi, K.: Tracking distributed aggregates over time-
based sliding windows. In: SSDBM, pp. 416-430 (2012)

16. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream
statistics over sliding windows. SIAM J. Comput. 31(6), 1794—
1813 (2002)

17. Dimitropoulos, X.A., Stoecklin, M.P., Hurley, P., Kind, A.: The
eternal sunshine of the sketch data structure. Computer Networks
52(17), 3248-3257 (2008)

18. Garofalakis, M.N., Keren, D., Samoladas, V.: Sketch-based geo-
metric monitoring of distributed stream queries. PVLDB 6(10),
937-948 (2013)

19. Gibbons, P.B.: Distinct sampling for highly-accurate answers to
distinct values queries and event reports. In: VLDB, pp. 541-550
(2001)

20. Gibbons, P.B.: Distinct-values estimation over data streams. In:
Data Stream Management: Processing High-Speed Data Streams.
Springer (2007)

21. Gibbons, P.B., Tirthapura, S.: Distributed streams algorithms for
sliding windows. In: SPAA, pp. 63-72 (2002)

22. Greenwald, M.B., Khanna, S.: Space-efficient online computation
of quantile summaries. In: SIGMOD, pp. 58-66 (2001)

23. Huang, L., Garofalakis, M., Joseph, A., Taft, N.: Communication
efficient tracking of distributed cumulative triggers. In: ICDCS
(2007)

24. Huang, L., Nguyen, X., Garofalakis, M., Hellerstein, J., Jordan,
M., Joseph, A., Taft, N.: Communication-efficient online detection
of network-wide anomalies. In: INFOCOM, pp. 134-142 (2007)

25. Hung, R.Y.S., Ting, H.F.: Finding heavy hitters over the sliding
window of a weighted data stream. In: LATIN, pp. 699-710
(2008)

26. Jain, A., Hellerstein, J.M., Ratnasamy, S., Wetherall, D.: A
wakeup call for internet monitoring systems: The case for dis-
tributed triggers. In: SIGCOMM Workshop on Hot Topics in Net-
works (HotNets) (2004)

27. Keren, D., Sharfman, 1., Schuster, A., Livne, A.: Shape sensitive
geometric monitoring. TKDE 24(8), 1520-1535 (2012)

28. Mirkovic, J., Prier, G., Reiher, P.L.: Attacking DDoS at the source.
In: ICNP, pp. 312-321 (2002)

29. Muthukrishnan, S.: “Data Streams: Algorithms and Applications”.
Foundations and Trends in Theoretical Computer Science 1(2)
(2005)

30. Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous
queries over distributed data streams. In: SIGMOD, pp. 563-574
(2003)

31. Papapetrou, O., Garofalakis, M.N., Deligiannakis, A.: Sketch-
based querying of distributed sliding-window data streams.
PVLDB 5(10), 992-1003 (2012)

32. Qiao, L., Agrawal, D., El Abbadi, A.: Supporting sliding win-
dow queries for continuous data streams. In: SSDBM, pp. 85-96
(2003)

33. Sharfman, I., Schuster, A., Keren, D.: A geometric approach to
monitoring threshold functions over distributed data streams. In:
SIGMOD, pp. 301-312 (2006)

34. Tirthapura, S., Xu, B., Busch, C.: Sketching asynchronous streams
over a sliding window. In: PODC, pp. 82-91 (2006)

35. Xu, B., Tirthapura, S., Busch, C.: Sketching asynchronous data
streams over sliding windows. Distributed Computing 20(5), 359—
374 (2008)

Appendix

A Proofs for centralized queries

Lemmas 3 and 4 provide error guarantees for point and inner product
queries on ECM-sketches, for any set of €cm,, €sw, Ocm and dgq,. With
Theorems 2 and 3 we derive the optimal values of these parameters
(the ones that minimize the total cost), given only the acceptable total
e and 0.

Lemma 3 With probability at least 1 — §cim, — 5w,

o com
o) — f(aw) < § O cowdeomllarlls Feow < y2220
6.s'u)HarHl lf€5w > ﬁ

Sketching Distributed Sliding-Window Data Streams

Proof We start with an overview of the proof. The ECM-sketch es-
timation is susceptible to two types of errors. The first is due to the
hash collisions, i.e., two different items may hash to the same ECM-
sketch cell. This error is relative to the L1 norm. The second is due to
the sliding window counters, and is relative to the counter value, i.e.,
the number of items hashed to the particular counter. For the lemma,
we derive a single error relative to the L1 norm by considering worst-
case bounds (i.e., maximum possible values) for the combination of
the two errors. We first bound the number of hash collisions that occur
at counter (j, h;(x)) for any row j < d within the query range r, as-
suming that the sliding window algorithm offers perfect accuracy. The
proof stems from the accuracy proof for Count-min sketches [11], dif-
ferentiating on the estimation step of the number of hash collisions (by
offering an error relative to ||ar||1 — f(z,), instead of ||ar||1). Then,
we consider the error caused by the sliding window estimation.

Error due to hash collisions. Temporarily assume that the slid-
ing window structure enables perfect accuracy (the assumption will be
lifted later). With I ; ., we denote the indicator variables which are
lifz # y A hj(xz) = hj(y), and O otherwise. We further define the
variables X, j,r tobe Xo jr =37, cp Ia,5,y f(y, 7). By our assump-
tion that the sliding window estimation is accurate, E(j, hj(z),r) =
f(z,7) + Xu j,. Since the ECM-sketch will return f(z,7) =
min; E(j,hj(z),r) = f(z,r) + min; X, ;» as a frequency esti-
mate, the estimation error will be f(z,r) —
which can be bounded as follows.

By pairwise independence of the hash functions: E(I j,) =
Pr[hj(z) = h;(y)] < 1/w = <. Therefore, the expected value of

f(z,r) = min; Xz j »,

Xejr 18 E(Xa:,j,r) = E (22:1 Ix,j,yf(ki 7’)) =
>vken\(o} F (1) E(Izjy) < (llarlly — f(z,7))¢. Furthermore,
by Markov inequality:

Pr[mjin Xzyj,r > €(Har||1 - f({l',’l”))] =

- f(z,m)] <

m,j,r)] < €7d < 5cm (1)
Error due to the sliding window estimation. In practice, the

sliding window algorithm may introduce errors to the computation of

E(j,hj(z),r). Let R(j, hj(z),r) denote the accurate number of bits
contamed within the query range at counter (7, hj(z)). Then, an (e, 6)-

PrVj : Xa
Prvj: X,

g > €(llar]l1

g > eB(X

approximate sliding window algorithm guarantees that
PrlE(j,hj(z),7) — R(j, hj(z),7) < eswR(j, hj(x),7)] > 1 — bsw.
Consider row j = minarg; E(j,h;(z),r), ie., the row with

E(j,hj(z),r) = f(z,r) . For the case that f(x,r) > R(j, h;(z),r),

we have:
Prf(z,r) < (1 + esw)R(, hj(z),r)] > 1 — 65w =
Pr(f(z,7) < (1+ €sw)(f(2,7) + Xz 5r)]

> 1= 65w =
Pr[f(m7 T) - f(I,T‘) < Xz,j,'r + esw(f(x7 T) + Xz,j,r)
>1=dsw

Furthermore, X, ;, can be bounded by Inequality 1, giving:
Prif(z,r) — f(z,r) < em(llarlly — f(@,7)) + €sw(f(z,r)+
eem(llar|l1 — f(2,7)))] 2 1= 85w — dem. For convenience we define
¢ = f(z,7)/llar||1. Then, P”'[f(%”‘) — f(@,7) < llar|l1(eem (1 -
o) +esw(cteem(L—c)))] = Pr(f(z,r) = f(z,r) < [lar||1(c(esw —
€em — €sw€cm) + €cm + Eswﬁcm)] > 1-—- 5sw - 6cm-

Variable c takes values between 0 and 1 (inclusive). When €5, <
€em /(1 — €cm), the RHS of the inequality (the error) is maximized for
¢ = 0. Otherwise, the RHS is maximized for ¢ = 1. Therefore, with a
probability of at least 1 — d¢cpm — Jsw:

. ar||1€em (1 + €s if €gqp < —Sem
f(iE,T) f({L‘ ’I’) || 7”1 (,m(aw) . sw > 1z€cm (2)
||a7'||155w lfesw 2 #Tm

21
With a similar analysis, the case of f(z,7) < R(j, h;(x), r) gives

a much tighter constraint:
Prf(z,r) — f(z,7) < eswf(@,7)] > 1 — 65w 3)

The lemma follows directly by inequalities 2 and 3. O

Theorem 3

Proof We first consider an ECM-sketch with a deterministic sliding
window structure, e.g., an exponential histogram. We want to derive
the combination of €., and €4, that minimizes the space complexity
of the sketch for a given ¢, i.e., minimizes C'(e) = O(W) We
study the two cases of Lemma 3 separately: e

Case 1 (esyw < 12’7): We first exploit the fact that

€= (1 + 6sw)fcr‘n (4)

to eliminate €5, from the space complexity of the sketch:

et =0 (ML) — o (i)} (/0]

€cm

The cost is minimized when the denominator is maximized. For a fixed
e chosen by the user, this happens when €.y, is minimized. The smallest
€ecm satisfying Eqn. 4 and the precondition of Case 1 is e¢yy, = lie,
resulting to €5, = €.

Case 2 (esw > - Ecm) By Lemma 3, we see that setting €5, = €
we achieve the required accuracy In order to derive €., notice that
we want to minimize the complexity C(e) = O(M) This is
achieved by maximizing €.,,. The maximum value “of e €cm satisfying
the precondition of Case 2 is ¢, =

1+e'
Notice that both cases lead to the same combination for minimiz-
ing the cost, i.e., ecm = %4-5 and €5y = €.
The case of randomized waves is similar. The cost function be-
comes O(In(1/8¢m) In(1/3sw)/(€eme2,,)), with the constraint that
0 = dem + dsw. The cost is minimized for dem = dsw = §/2,
€cm = 1%’_6 and €5y, — €. O

Lemma 4 With probability at least 1 — §cm,

llar|[1]lor][1€cm (1 + €sw)?

2
. 2.
ifeem 2 EETH
llar|l1]br]l1 (€2, +2€s0)

+2es
ifeom < CEITE

|(l'r/©\br —ar © br' <

Proof We first examine the case that ar/é\br > a, ® b,. Consider
the estimation derived by any single row j of the ECM-sketch. With
E,(%,4,7) we denote the frequency estimation of the sliding window
counter at position (i, 5) for stream a and for query range r.

22

Odysseas Papapetrou et al.

w
E((ar ©br)j —ar ©by) = > Eali,j,7)Ey(i, j,r) — ar © by

i=1
SZ Z fa(pﬂ') Z fb(q’T)*(1+ﬁsw)2*aT®br
i=1 peD, q€D,
hj(p)=i hj(q)=i
=3 > fal@m) felr) « (1+ew)+
i=1 z€D,
hj(ac)zi

fa(p7 r)fb(qu) * (1 + Esw)2 —ar © b’r'

> X

i=1 p,qeD,p#q,
hj(p)=h;(q)=i

—(1+ (3 falas) ol)+

zeD

S falpr) (@) — ar O by

p,q€D,p#q,
hj(p)=h;(q)

=a,r ® br(ﬁfw + 255w)+
S fae) la) (1 o) (5)

p,q€D,p#q,
hj(p)=h;(q)

Our next stepistobound Y , oD pstq, fa(p:7)fs(g,). Forcon-
hj(p)=h;(q)
venience we use Xij,r as a

p,q€D,pi#q, Ja (p,7)fo(q, 7). Then,
hj(p)=h;(q)

BE(Xijn) = Y.

P,a€D,p#q
1
= > falpr) fola,r)
p,q€D,p#q

SECTm(Z fa(p,’/‘)fb(q’ r) —ar® b7)

p,q€D

shortcut for

Pr[hj(p) = hj(q)]fa(p7r)fb(q7 T)

Xi,j,~ can be bounded by Markov inequality:

PT‘[H;inX¢7j7r > €cm(Z fa(pﬂ')fb(qv T) — ar Qbr)] =

p,q€D
PrVj: Xijr > eB(Xijr)] < e < dem ©)
Letc= %. Combining Equation 5 and Inequality 6:

ar/®\br —ar © by

<ar ©® br(fgw + 25510) + Z

p,q€D,p#q,
hj(p)=h;(q)

<ar ® br(fgw + 26511)) + (1 + Esw)2 min Xi,j,r
J

<ar ® br(fgw + 2€sw)+

(1+Esw)2€cm Z fa(p:r)fb(qu)faTQbr

p,9€D

fa(P, T)fb(qu)(l + 6510)2

The values of ¢ that maximize the error (the RHS) are ¢ = 1 when
€em < itj%?;’ and ¢ = 0 when e¢p, > % The corre-
sponding maximum errors are ||a,||1||br||1 (€2, + 2€sw) (forc = 1),
and ||ar||1]]br||1€em (1 + €sw)? (for ¢ = 0).

With a similar analysis, the case of ar/(-D\br < ar O by gives a
tighter constraint: Prja, © by — ar @ br > (€2, + 2¢€sw)ar ©by] <
dsw. The lemma follows directly. O

Theorem 2
Proof Similar to the analysis for point queries, we need to consider the

two cases of Lemma 4 separately.
2
Case 1 (ecm > %): By Lemma 4, we set ecm (1+€sw)? =
sw
€ in order to achieve the required accuracy. The space complexity then
becomes C(e) — 1 _ (desw)?® (4esw)®
€€sw

€sw€em €€sw s

decreasing for €5, in the interval [0, 1], we can minimize the space
complexity by setting the maximum value for €4, satisfying the case’s

2
precondition eqp, > % ie., €sw = Ve+ 1 — 1. Then, ecm

. Since is strictly

€
becomes equal to i1
2
2€sw B :
Case 2 (ecm < %): By Lemma 4, in order to achieve
the required accuracy we need to set €2, + 22, = € = €sw =

ve—+ 1 — 1. Accordingly, ecr, = 5-%1
Notice that, similar to the point queries analysis, the two cases lead
to the same configuration for minimizing the cost, i.e., €cm = —— and

e+1
esw=Ve+1—-1. O

B Proofs for distributed setups

Theorem 4 derives worst-case error bounds for the merging of expo-
nential histograms. Lemma 2 and Theorem 5 prove the correctness of
the algorithm for continuous self-join size queries.

Theorem 4

Proof We argue that EHg approximates the exponential histogram
of the logical stream, with a maximum relative error of € + €’ + €€/,
where ¢ is the error parameter of the initial exponential histograms.
Consider a query for the last ¢ time units. With s; = ¢t — ¢ we denote
the query starting time. Let @@ denote the index of the bucket of EHg,
which contains sq in its range, i.e., s(EHg) <sg < e(EHg). With
i and ¢ we denote the accurate and estimated number of true bits in
the query range. According to the estimation algorithm, the estimation
for the number of true bits in the stream will be 2 = 1/ 2\EH£ | +
Dicy <o |EH gé |. This estimation may be influenced by two types of
approximation errors: (a) a possible approximation error of the overlap
of bucket EH, g with the query range, denoted as erry, and, (b) a possi-
ble approximation error of 4, denoted as erra, because of the inclusion
of data that arrived before s, in buckets Y < @, or data that arrived
after s, in buckets Y > Q. Let us now look into these two errors in
more details.

With respect to erra, recall that the contents of individual buck-
ets are inserted to F2Hg, using the starting time and the ending time
of the buckets. Therefore, it may happen that some bits arrive before
sq but are inserted to £ Hg with a timestamp after sq, creating ‘false
positives’. The opposite is also possible. These bits are called out-of-
order bits with respect to sq. Clearly, out-of-order bits may lead to
underestimation or overestimation of the query answer. According to
Lemma 5, the number of out-of-order bits originating from each expo-

—a, O br(egw + 2eqw) + (14 Esw)26cm(||ar||1 lorll1 — ar ® br)nentlal histogram EH, is at most €iz, with i, denoting the accurate

number of true bits that were inserted in £ H, at or after sq. The num-

=cllar||1[1br]|1 (€20 + 2€sw) + €cm (1 + €sw)?[lar|[1][br|11 (1 = cher of out-of-order bits from all streams is then bounded as follows:

=llarl1]br|l1 (c(eZy + 2esw) + €em (1 + €sw) (1 =)

with probability at least 1 — §cp,.

errg <YM eip =€y ig = €.
Underestimation or overestimation of the overlap may also happen
because of the halving of the size of bucket EH, g during query time

Sketching Distributed Sliding-Window Data Streams

23

(err1). As shown in [16], this process may introduce a maximum rela-
tive error of er, where r is the sum of the sizes of all buckets in EHg,
with an index lower than @ (i.e., with a starting time at least equal to
sq)- Recall that » may also include bits that have arrived before s4 (the
out-of-order bits), which is however upper-bounded by ei, as discussed
before. Therefore, the maximum underestimation or overestimation er-
roriserr; = e'r < €'(i+€i) = i 4 ec’i, withi = 37, ia.

Summing err; and errz, we get a maximum relative error of (e +
€’ + e€’), which completes the proof. O

Lemma 5 Consider an individual exponential histogram
EH, of stream X, configured with error parameter €. The out-of-order
bits with respect to the query starting time sq that EH, can generate
are at most €iy, with i, denoting the number of true bits arriving at or
after sq in X.

Proof Due to the non-decreasing nature of bucket timestamps, there
can be only one bucket with a start time less than s, and end time
greater than or equal to s,. Let this bucket be EHJ. All other buckets
have both starting and ending time at the same side of s, and therefore
their contents are always inserted with a timestamp at the correct side
of s4 and do not create out-of-order bits.

Since the ending time of F H. g]c is at or after s, its most recent true
bit has arrived at or after sq, and should be included in the query range.
Therefore, the number of true bits arriving at or after s, in stream X
iSiz > 1+ Zi;i |EH?|. Furthermore, since half of the bits of EH?
are inserted using the ending time and half using the starting time of
the bucket, the maximum number of out-of-order bits is | EH3|/2. By
construction (invariant 1):

, . -
|EH| |EH| < by <
— §€$T§6(1+I;‘EHZD§EM
21+ |EH|) =
b=1
[}
Lemma 2

Proof The proof relies on the following properties of the min:
Monotonicity: If x[i] < y[i] forall 4, then min; {z[i]} < min,;{y[i]}.
Distributivity: For any monotonically increasing function f,
ming{ f(x[i])} = f(mini{x[i]}).
We want to derive sufficient conditions such that (1—0) f(v(t)) <

F(v(t0)) < (1+6) £ (v(t)), with £ (v(t)) = mingy,,— {[[v[row]||*}.

By the distributivity property of the min for monotonically increasing
functions (i.e., the square root), it is sufficient to verify:

w = T}}“ﬁgl{\\\’(t)[row]n} < w.
By the triangle inequality:
[Iv(#®)lrow] = v(to)row]|| < 3 [lv;(#)[row] — v; (to) [row]]

j=1
= Z dj[row] = nd[row] =
j=1

[Iv(to)[row]|| — nd[row] <[|v(t)[row]|| < |v(to)[row]||+
nd[row| ()

Notice that ||v(¢o)[row]|| is constant per synchronization. Therefore,
Inequality 7 bounds ||v(t)[row]|| by a linear relation of d, i.e., it allows
us to form threshold-crossing queries in the R? space. By monotonicity
of the min, it suffices to monitor the following conditions:

f(v(to))

?ﬁlll'l{HV(to)[z}H + nd[i]} < i

and

i Iv(to)] — nal) > | Z0te))

The lemma follows directly, by dividing both sides of the conditions
byn. O

Theorem 5

Proof Sketch: By construction, all counters of v¥*(¢) are at least equal
to the corresponding counters of v;(t). Therefore, the self-join size es-
timate for v¥ (¢) will be at least equal to the self-join size estimate for
v;(t) at all times. Using Lemma 2 to monitor v but only considering
the shifts which increase the counters, we get that if

minfow:l{”v(to)nw + d%[row]} < %,/%tg)), then
F(v(to)) < (14 6)f(v(t)). The lower bound is shown analogously.

[}

